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Abstract

In this letter, we demonstrate a reversible strong coupling regime between a dipolar sur-

face plasmon resonance and a molecular excited state. This reversible state is experimentally

observed on silver nanoparticle arrays embedded in a polymer film containing photochromic

molecules. Extinction measurements reveal a clear Rabi splitting of 294 meV, corresponding

to ∼ 13% of the molecular transition energy. We derived an analytical model to confirm our

observations and we emphasize the importance of spectrally matching the polymer absorption
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with the plasmonic resonance to observe coupled states. Finally, the reversibility of this cou-

pling is illustrated by cycling the photochromic molecules between their two isomeric forms.

Keywords: Plasmon, spiropyran, exciton-plasmon coupling, Rabi splitting, active plasmonics

Hybrid plasmonic-molecular systems are a subject of great interest for their potential to control

and engineer light-matter interactions at the nanoscale. In particular, surface plasmon modes can

coherently hybridize with molecular excitons with large oscillator strength leading to a so-called

strong coupling regime. Such regime and other coherent effects were reported in plasmonic cavity-

less experiments.1–5 Surface plasmon interaction with molecular states is at the basis of ultra-

fast functionalities that can be efficiently used to actively control molecular relaxation pathways6

and realize all-optical switches.7 In this context of controllable plasmonic devices, photochromic

molecules like spiropyran compounds are of particular interest because they can undergo light-

induced reversible conformational changes associated with a large modification of the refractive

index n.8–11 Combined with the sensitivity of surface plasmon to the surrounding medium, this

property was used to photo-modify the transmission characteristics of hole arrays,7 to realize plas-

mon waveguide modulators12 and to coherently couple to plasmonic nanocavities.13 In this letter,

we report on the observation of an hybridization between the dipolar surface plasmon resonance

of Ag nanoparticles and the electronic transition of spiropyran molecules. Specifically, we show

that the coupling strength depends on the spectral position of the surface plasmon resonance and

the conformational state of the molecules. This dependence provides an optical mechanism to ex-
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ternally control the hybridization state of the coupled system. We unambiguously illustrate such a

command by cycling the photochromic transition of the molecules.

Silver nanoparticles were fabricated in large arrays using standard electron beam lithography

on a glass substrate. The array periodicity was adjusted to keep constant the filling ratio f de-

fined as f = 4πr2/a2, with r the particle radius and a the pattern periodicity. The height of

the nanoparticles was fixed at 50 nm. Spiropyran 1’,3’-Dihydro-8-methoxy-1’,3’,3’-trimethyl-

6-nitrospiro[2H-1-benzopyran-2,2’-(2H)-indole] molecules were diluted at 1.66 wt.-% into 20 g/L

Polymethylmethacrylate (PMMA) solution in chlorobenzene. This solution was spin-coated onto

the nanoparticle arrays to obtain a 60 nm-thick doped PMMA film. This specific photochromic

molecule was chosen for its large yield of transition from the spiropyran (SPy) form to the mero-

cyanine (MC) isomer when exposed to ultra-violet (UV) radiation.9 We verified that the PMMA

film did not prevent the SPy→MC reaction. A film of doped polymer without Ag nanoparticles

was exposed for 200 s onto the radiation from a xenon lamp filtered with a 400 nm low-pass filter.

Figure 1(a) shows the absorbance spectra of the polymer before and after irradiation; the strong ab-

sorption peak at 570 nm confirms an isomerization to the MC state.14 We performed ellipsometric

measurements to quantitatively estimate the wavelength dispersion of the optical constants ∆n and

∆k upon photoisomerization of the SPy-doped PMMA. Results are shown in Fig. 1(b). The vari-

ations of the refractive index and the extinction coefficient clearly show the molecular transition

around 570 nm and are in good agreement with previous studies .14,15

The surface plasmon resonances of the coated Ag nanoparticles were characterized by standard

extinction spectroscopy. The arrays were illuminated by a halogen lamp and the transmitted light

was collected by a 20× objective (0.4 numerical aperture) and sent to a fiber-coupled spectrometer.

The probed region was estimated to be 53 µm in diameter. All spectra obtained on the coated arrays

where normalized by the transmission spectra of SPy-doped PMMA film without nanoparticles to

eliminate the contribution of the molecular absorption band of the MC isomer. The solid black

curves of Fig. 2(a), (b) and (c) display the normalized extinction spectra for 3 nanoparticle arrays

covered by the SPy-doped PMMA. The diameter of the particles are 70 nm, 90 nm and 110 nm,
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Figure 1: (a) Absorption spectra of the SPy doped PMMA thin layer before and after UV irradiation
illustrating the conformational change of the spiropyran. (b) Ellipsometric measurements of the
change of refractive index ∆n(solid black curve) and extinction coefficient ∆k (dashed red curve)
between the two photochromic states.

.
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respectively. The vertical dashed line in each graph illustrates the spectral position of the molecular

absorption peak of the MC form. The molecular transition is situated on the red side of the surface

plasmon resonance for the 70 nm-diameter particle array, close to the plasmonic resonance for the

90 nm-diameter particle array and is on the blue side of the resonance for the 110 nm-diameter

particle array.

The dashed red curves in Fig. 2(a), (b) and (c) represent the normalized extinction spectra

after UV exposure and isomerization of the spiropyran molecules. After exposition, the resonance

positions of the 70 nm and the 110 nm-diameter particle arrays are respectively blue and red-

shifted. A shoulder is also observed near the maximum absorption of the MC form. Each inset

in Fig. 2 shows a fitted decomposition of the normalized extinction spectra after exposure by two

spectrally separated Lorentzian peaks. The spectral variation of the surface plasmon resonances

can be understood by using the ellipsometric measurements of Fig. 1(c). For example, the blue-

shift of the resonance for the array composed of 70 nm nanoparticles [Fig. 2(a)] can be related to

the negative change of refractive index ∆n=-0.06 at λ=488 nm. By differentiating the denominator

of the polarizability α of a nanoparticle,16 we obtain ∆λ =−4n∆n(dε/dλ )−1. By taking n=1.531

at λ=488 nm from the ellipsometric data and the dielectric function ε of Ag from the literature,17

we obtain ∆λ=-8 nm, which is very close to the 10 nm blue-shift measured in Fig. 2(a). This

photochromic control of the surface plasmon resonance was already reported by Zheng et al.15

and was understood as an interaction in the weak coupling regime between the absorption band of

the MC form and underlying plasmonic resonances.

The dispersion of the optical constants alone cannot explain the formation of two peaks in the

extinction spectra of the 90 nm-diameter particle array [Fig. 2(b)], as well as the formation of the

shoulder in the other spectra. This spectral shape suggests an hybridization between two strongly

interacting states. A Rabi splitting up to 700 meV was previously observed in a multilayer plas-

monic geometry13 where hybrid states were formed between an excitonic transition and the en-

ergy levels of a metal/Spy-doped PMMA/metal cavity. In our case, the two peaks in the extinction

spectra of Fig. 2(b) are split by 294 meV, a separation corresponding to ∼13% of the molecular
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Figure 2: (a) to (c) Normalized extinction spectra of silver nanoparticle arrays embedded in a
PMMA-doped SPy layer, before (black solid curve) an after (red dashed curve) UV irradiation.
The diameter of the nanoparticles are respectively 70 nm, 90 nm and 110 nm. The vertical dashed
black lines correspond to the maximum absorbance of the MC layer. The insets represent the fitted
decomposition of the red dashed curves by two separated Lorentzian peaks.
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transition energy. This value is smaller than the splitting ratio obtained for a multilayer cavity13

which yielded a 32% ratio. The lower quality factor of the dipolar resonance is at the origin of

the reduced splitting ratio. Radiative decay, Joule losses and fabrication defects are responsible for

a significant broadening of the surface plasmon resonance, thus limiting the interaction strength

between the coupled states.

The passage from a weak to a strong coupling regime is affected by the spectral position of

the plasmon resonance with respect to the molecular absorption band. For the smallest particles

(70 nm in diameter), the plasmon resonance and the absorption peak are detuned by 80 nm and

are therefore weakly interacting. However, a small shoulder on the red side of the resonance peak

is the first indication of a hybridized state. For the 90 nm-diameter particles, the detuning is only

14 nm and the signature of hybrid states is clearly observed in the normalized extinction spectra.

Finally, the spectral response of the largest particles is detuned by 45 nm from the absorption peak

of the MC form and a small shoulder on the blue side of the resonance peak is reminiscent of

the hybridized state. This type of extinction spectroscopy analysis was performed for a series of

diameter. The spectral position of each peak is plotted as a function of the diameter in Fig. 3 (a). A

clear anti-crossing is observed when the plasmon resonances are nearly matched to the molecular

excited states. The horizontal dashed line is the absorption maximum of the MC form, and the

inclined dashed line shows the red-shift of the surface plasmon resonance with nanoparticle size

before irradiation. For detuned resonances, only the SP signature is remaining since the molecular

contribution is removed during the spectral re-normalization.

To support these experimental results, calculations were made using a model providing the

extinction cross-section σ of the nanoparticles embedded in an absorbing medium.18 Here, the

absorbing medium was simulated using the experimental permittivity of the photo-merocyanine

layer recorded by ellipsometry [Fig. 1(b)]. To account for the energy-shifting part of the retardation

effect and the radiative loss which are missing in the model, expression 1 from Kuwata et al.19 was

used to calculate the polarizability α of a nanoparticle:

7



Figure 3: (a) Evolution of the peak wavelengths as a function of nanoparticle diameter. The dashed
black lines represent the position of the MC absorption band (horizontal line) and the surface
plasmon resonance of the arrays before irradiation. The red curve shows the evolution of the
peaks after irradiation illustrating a anti-crossing of the dispersion curves. (b) Calculated map of
the dispersion curves representing the extinction cross-section as a function of wavelength and
nanoparticle diameter. The inset corresponds to a vertical cross-cut of the map where the splitting
is maximum. The position of the plasmon resonance in the Spy-doped PMMA layer before the
photochromic transition corresponds to the white dashed curve. The horizontal white dashed line
corresponds to the maximum of the MC absorbance.
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α = 4πr3 1−0.1(ε̃1 + ε̃2)θ
2/4

(ε̃1 +2ε̃2)/(ε̃1− ε̃2)−Ξ1(0.1ε̃1 + ε̃2)θ 2/4−Ξ2ε̃2
2
θ 4− i(2/3)ε̃2

3/2
θ 3

(1)

where ε̃1 and ε̃2 are the complex refractive indices of the metal and the surrounding medium

respectively, θ = 2πrωc, r is the particle radius and ω is the incident angular frequency. Ξ1 = 5.5

and Ξ2 = 0.8 are two phenomenological weighting factors introduced to obtain an optimal fit of the

experimental results. The extinction cross-section was then calculated from the polarizability.16

The calculated cross-sections before and after irradiation are depicted in the inset of Fig. 3(b). The

single resonance at 556 nm before isomerization of the SPy (solid black curve) is decomposed after

the transition into two peaks at 513 nm and 633 nm, corresponding to a splitting value of 400 meV.

The small difference between this value and the experimental one (294 meV) is probably due

to the geometry differences between the modeled and the real systems. Indeed, the calculations

deal with a spherical nanoparticle embedded in an homogeneous medium whereas the measured

nanoparticles are rounded cylinders and coated with a finite layer, whose thickness corresponds

approximately to the height of the nanoparticles. The calculated evolution of surface plasmon

resonance of the nanoparticle embedded in MC-like medium is reported in Fig. 3 (b). The calcula-

tion confirms the presence of an anti-crossing of the dispersion curves when the surface plasmon

resonance matches that of the molecular absorption band.

Finally, we show in the following that the hybridization is a controllable and a reversible pro-

cess by cycling the spiropyran between its two isomeric forms. The thermal relaxation of the

molecules in the SPy isomer is initiated by heating the irradiated merocyanine layer at 40◦C dur-

ing 10 minutes. After this treatment the SPy-doped-PMMA layer is again transparent in the visible

range. Extinction spectra were performed during a complete isomerization cycle of the molecular

film covering the 90 nm diameter particle array. Results are shown in Fig. 4. The extinction spec-

trum of the unexposed system displays a single surface plasmon peak (Fig. 4 (a)), whereas after

UV irradiation the extinction spectrum displays again a splitting of the resonance indicative of a
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strong coupling regime discussed above (Fig. 4 (b)). After thermal treatment and a molecular con-

formational change, the extinction spectrum returns to the original state with only one peak visible

(Fig. 4 (c)). Fatigue of the polymer is already visible after thermal treatment as the amplitude of

the extinction peak is slightly lower in Fig. 4(c) compared to the one in Fig. 4(a).

Figure 4: Extinction spectra of the 90 nm-diameter particle array embedded in the photochromic
layer for a complete isomeric cycle. (a) The spiropyran is in the Spy form. (b) The spiropyran is
in the MC form after the UV illumination. (c) After a thermal treatment, the spiropyran is back in
its Spy form.

In conclusion we observed a strong coupling between a dipolar surface plasmon and a molec-

ular excited state. Such coupling is possible if the molecular transition and the plasmonic reso-

nance are closely matched. Calculations are confirming the possibility to obtain a strongly coupled

system with a splitting ratio in agreement with the experimental value. If the detuning between

resonances is large, the surface plasmon response is determined by the refractive index change of

the molecular layer. We further showed that the hybridized state between the surface plasmon and

the electronic transition is reversible by acting on the conformational state of the photochromic
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molecule. Although demonstrated with an inherently slow thermal decoloration, the strong cou-

pling regime could be controlled on a much faster time scale using a photo-activation of the mero-

cyanine to spiropyran transformation.
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