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Abstract: 

Chirality, which describes the broken mirror symmetry in geometric structures, 

exists macroscopically in our daily life as well as microscopically down to molecular 

levels. Correspondingly, chiral molecules interact differently with circularly polarized 

light exhibiting opposite handedness (left-handed and right-handed). However, the 

interaction between chiral molecules and chiral light is very weak. In contrast, 

artificial chiral plasmonic structures can generate “super-chiral” plasmonic near-field, 

leading to enhanced chiral light-matter (or chiroptical) interactions. The “super-chiral” 

near-field presents different amplitude and phase under opposite handedness 

incidence, which can be utilized to engineer linear and nonlinear chiroptical 

interactions. Specifically, in the interaction between quantum emitters and chiral 

plasmonic structures, the chiral hot spots can favour the emission with a specific 

handedness. This article reviews the state-of-the-art research on the design, 

fabrication and chiroptical response of different chiral plasmonic nanostructures or 

metasurfaces. This review also discusses enhanced chiral light-matter interactions that 

are essential for applications like chirality sensing, chiral selective light emitting and 

harvesting. In the final part, the review ends with a perspective on future directions of 

chiral plasmonics. 
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1. Introduction 

 Chirality refers to the handedness in geometric structures with a broken mirror 

symmetry, which exists naturally in varieties of biomolecules, like DNA, enzymes, 

and proteins, as well as in certain crystals. The two structures or molecules with 

opposite mirror symmetry are so-called enantiomers, bringing an interesting question 

yet to be answered, i.e., why often there is only one enantiomer existing in life, such 

as L-amino acids and D-sugars. Similarly, many drug molecules are also chiral 

molecules with only one enantiomer suitable for the disease therapy while the other 

one being functionless or even toxic. Therefore, it is extremely important to develop 

convenient and efficient techniques for chirality detection. Since the pioneering 

experiments performed by Pasteur in 1848 [1], it has been understood that the two 

enantiomers of chiral molecules interact differently with polarized light. As a 

consequence, optical techniques are widely used to detect chirality, for instance by 

measuring the rotation of the plane of polarization induced by the chiral medium (as 

in Pasteur’s experiment) or the different absorption of the left circularly polarized 

light (LCP) or right circularly polarized (RCP) light. The problem lies in the weak 

chiroptical responses of natural chiral systems, limiting the detection sensitivity. With 

the advancement of nanofabrication, it is possible to artificially create chiral 

plasmonic nanostructures or metasurfaces which can generate evanescent fields 

whose chirality can be much stronger than many natural chiral systems, leading to 

enhanced chiral light-matter interactions [2-7]. In addition, the chiral plasmonic 

structure will sustain a “super-chiral” near-field (also termed as chiral “hot spots”). 

The “super-chiral” near-field will carry different amplitude and phase under RCP and 

LCP excitations, which can manipulate the circularly polarized light-matter 

interactions [8]. More importantly, the chirality of the near-field can be imprinted to 
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the far-field luminescence of the coupled emitters, favouring the emission light into 

one particular handedness. The progress of chiral plasmonics opens the door for a 

series of applications, including high-sensitivity chiral detection, chiral selective 

photoluminescence (PL) manipulation, and chiral selective light harvesting for 

photocatalysis and photodetection. 

 Herein we review the state-of-the-art studies on chiral plasmonics and 

associated chiral light-matter interactions. Section 2 introduces the general design and 

fabrication of chiral plasmonic geometries, from planar structures to three-

dimensional (3D) structures and metasurfaces. The linear and nonlinear chiroptical 

responses of chiral plasmonic structures will also be discussed in section 2. In section 

3, we will focus on the coupling of chiral plasmonic nanostructures to different 

materials to achieve enhanced chiral light-matter interactions for applications in 

chirality sensing, circular polarization controlled photoluminescence, and chiral 

selective hot electron driven light harvesting. Finally, we will end with a short 

summary together with a future outlook of this field. 

 

2. Chiral plasmonic nanostructures 

2.1 Design and fabrication of chiral plasmonic nanostructures 

 Different types of chiral plasmonic geometries have been designed and 

fabricated by top-down or bottom-up techniques reported in the literature, such as 

planar and three dimensional (3D) chiral nanostructures and metasurfaces. For 

example, Figure 1a shows a planar Au heptamer chiral nanostructure prepared using 

electron beam lithography technique which exhibits Fano resonance feature in the 

scattering spectra [9]. At the Fano resonance wavelength, chiroptical effects were 

observed which can be modulated by adjusting the inter-particle distance and rotation 
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angle. Figure 1b shows another type of planar metal-insulator-metal (MIM) 

multilayered chiral nanostructure with Gammadion-shape [10]. The nanostructures 

with opposite mirror symmetry show reversed circular dichroism effect for the third 

harmonic generation. 

Besides the planar geometries, 3D chiral plasmonic nanostructures have also 

been widely investigated. For instance, closely spaced metallic nanodisks with 

different heights have been fabricated using hole-mask colloidal lithography (HCL) 

[11], as shown in Fig. 1c. In addition to the height differences, the individual 

nanodisks can also be made of different metals. As a result, the chiroptical properties 

of such 3D plasmonic oligomers will be determined by the complex interplay between 

the near-field interactions and phase retardation in these oligomer structures. Figure 

1d presents a 3D gold helix structure displaying chiroptical effects on mid-infrared 

frequencies [12]. Such a structure was achieved by combining direct 3D laser writing 

technique with electrochemical metal deposition and hence has a limited resolution.  

In contrast to lithography techniques which typically require complicated 

procedures to generate 3D architectures, bottom-up self-assembly methods using 

chiral molecular template, e.g., DNA or peptide, are more favored in the preparation 

of 3D chiral plasmonic nanostructures [13,14]. Figure 1e shows an example of left- 

and right-handed gold nanohelices prepared via chiral assembly of gold nanoparticles 

using a single-stranded DNA as template [15]. The gold nanoparticles are 

functionalized with different thiol-modified DNA strands that are complementary to 

the template DNA, allowing the attachment of the gold nanoparticles to the template 

DNA at a specific attachment site. The chiroptical properties of these assembled gold 

nanohelices are therefore determined by the collective surface plasmon interactions of 

accurately positioned nanoparticles in close proximity with chiral arrangement. As 
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another example of such bottom-up fabrication, Banzer and co-workers [16] have 

recently demonstrated chirality in trimers made of (achiral) colloidal gold and silicon 

nanoparticles. In that system, chirality stems from the heterogeneous material 

composition of the trimer (one gold nanoparticle and two Si nanoparticles). Compared 

to the planar chiral structure, the 3D chiral structure typically exhibits stronger 

chiroptical responses. This is because the latter one is a truly 3D chiral structure while 

the chiral response of the former one mainly comes from the substrate which could 

induce a small perturbative symmetry-breaking effect. When there is no substrate or 

when the planar structure is embedded into a uniform matrix, the chirality of the 

planar structure will disappear. A detailed study has been conducted with planar and 

3D starfish chiral structure fabricated with electron beam lithography and on-edge 

lithography, respectively. Based on the polarization dependent transmission spectra 

shown in Fig. 1f, the chiral response of the 3D structure is almost two orders of 

magnitude higher than the planar structure [17].  

 Last but not least, metasurfaces showing polarization dependent functions 

under circularly polarized light have also been reported. A metasurface refers to an 

artificial sheet material with sub-wavelength thickness and spatially varying optical 

properties determined by the arrangement of the meta-atoms—fundamental building 

units of the metasurface. By engineering the chiroptical response of the spatially 

arranged meta-atoms, Fig. 1g shows an example of chiral metasurface based on which 

reflective chiral meta-holography has been realized [18]. With the same metasurface, 

different patterns can be reconstructed when illuminating with LCP or RCP. The 

reflected light keeps the same handedness as the incident circularly polarized light 

which performs differently from conventional reflectors. 
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Figure 1. Chiral plasmonic nanostructures. (a) Schematic of a planar Au heptamer 

chiral nanostructure showing enhanced chiroptical response due to the plasmonic 

Fano resonance. Reproduced with permission from ref. [9]. (b) Schematic of 

gammadion-shaped planar MIM nanostructures with mirror symmetry. Reproduced 

with permission from ref. [10]. (c) Schematic illustration of 3D chiral plasmonic 

heterotetramers (with different heights for each nanodisk) fabricated with HCL 

technique. Reproduced with permission from ref. [11]. (d) Schematic of left-handed 

gold helix nanostructure fabricated with direct 3D laser writing followed by 

electrochemical deposition. Reproduced with permission from ref. [12]. (e) Schematic 

of left- and right- handed gold nanoparticle helices fabricated with DNA origami 

approach. Reproduced with permission from ref. [15]. (f) Comparison of the planar 

and 3D starfish chiral structure where the latter shows stronger chiroptical effect than 

the former. Reproduced with permission from ref. [17]. (g) Schematic of a chiral 



8 
 

metasurface for reflective chiral meta-holography. Reproduced with permission from 

ref. [18]. 

 

2.2 Chiroptical effect 

 Under illumination with circularly polarized light, chiral materials exhibit 

chiroptical effect due to their different refractive index and extinction coefficient for 

RCP and LCP. Plasmonic chiral structures with highly twisted evanescent fields also 

exhibit a chiroptical effect, which could be even stronger than the naturally existent 

chiral systems. Three frequently discussed chiroptical effects are circular 

birefringence (CB), circular dichroism (CD) and asymmetric transmission.  

 CB refers to the optical rotation of polarization of the linearly polarized light 

transmitted through a chiral medium where the rotation direction (clockwise or 

counterclockwise) is determined by the handedness of the chiral material. The linear 

polarization rotation stems from the different phase velocities for RCP and LCP light 

when interacting with one certain chiral structure. As linearly polarized light can be 

treated as a combination of RCP and LCP light, the RCP and LCP components keep 

the same amplitude but have different phase velocities when transmitting in the chiral 

medium, resulting in the linear polarization rotation. Figure 2a shows the 

experimental scheme of the CB measurement and Figure 2b provides the measured 

rotation angles for the achiral plasmonic structure and chiral plasmonic structure of 

different handedness [19]. Opposite rotation direction was observed with the left- and 

right- handed chiral structure while no rotation was observed with the achiral structure.  

 CD refers to the differential absorption or transmission of RCP or LCP which 

is frequently used for chirality sensing. Figure 2c shows the schematic of the achiral 

and chiral optical antennas and Fig. 2d presents the experimentally measured chirality 
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flux and CD spectra of the achiral and chiral antennas in the far field [20]. The 

chirality flux is linked to chiral near-field and can be determined by detecting the CD 

of the scattered light in the far field. Although both spectra show a clear difference 

between achiral and chiral antennas with opposite handedness, their magnitude and 

resonant wavelengths differ from each other as they actually contain different 

information. CD spectrum is measured with circularly polarized incident light which 

reflects the alteration of the chiral light by the sample and mainly provides chirality 

information of the sample. In contrast, linearly polarized incident light is used for the 

chirality flux spectrum which could measure the capability of the sample to create 

chiral fields.  

 Asymmetric transmission points to the different RCP to LCP or LCP to RCP 

conversion efficiencies. Figure 2e shows the schematic diagram of a planar plasmonic 

metasurface composed of L-shaped gold nanostructures arranged in a square lattice 

[21]. The designed metasurface could transmit and simultaneously reverse the spin of 

incident RCP, but reflect and meanwhile maintain the spin of incident LCP. In other 

words, RCP can be converted into LCP with the above metasurface while LCP will be 

reflected as LCP. Such an asymmetric transmission is proved experimentally and can 

be clearly visualized in the measured circular polarization resolved transmission 

spectra shown in Fig. 2f. 
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Figure 2. Linear chiroptical effects. (a) Schematic illustration of the CB 

measurement. (b) Optical rotation angles measured from plasmonic planar 

nanostructures with left-handedness, achiral geometry, and right-handedness. a and b 

are reproduced with permission from ref. [19]. (c) Schematic illustration of achiral 

and chiral optical antennas. (d) Comparison of chirality flux spectra and CD spectra 

measured from the achiral and chiral optical antennas. c and d are reproduced with 

permission from ref. [20]. (e) Schematic of a planar plasmonic metasurface with a 

designed asymmetric transmission. (f) Circular polarization resolved transmission 

spectra measured with the metasurface in (e). (e) and (f) are reproduced with 

permission from ref. [21]. 

 

 Besides the above linear chiroptical effects, nonlinear chiroptical effects such 

as the different second harmonic generation (SHG) or third harmonic generation 
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(THG) signals under RCP and LCP incident light have also been reported in chiral 

plasmonic systems [22-26]. The nonlinear interaction between near-field and chiral 

light is usually three orders of magnitude stronger than linear interaction. For example, 

CD in the SHG signal has been well reported for chiral plasmonic nanostructures with 

a “G” shape [22]. Figure 3a and 3d show the SEM images of two types of G-shaped 

Au nanostructures arranged in opposite mirror symmetry. From the SHG microscopy 

images shown in Fig. 3b-c and Fig. 3e-f recorded from the two structures respectively, 

some “hot spots” were observed whose intensity and distribution depend on the 

circular polarization of the incident light, leading to the CD effect of the SHG. As a 

result, the CD of SHG is intrinsically sensitive to the geometric arrangement of these 

“G-shaped” structures which directly determines the position and intensity of SHG 

hot spots under particular circularly polarized light. The origin of the SHG 

enhancement in this case can be attributed to a strong local enhancement of the EM 

field at the fundamental frequency. On the contrary, the SHG mapping can provide 

the distribution of the chiral hot spots.  

 Similarly, CD in the THG signal was also demonstrated with a Gammadion-

shaped chiral plasmonic structure of C4 rotational symmetry which was chosen based 

on the selection rule for THG [23]. Figure 3g shows the working principle of the 

Gammadion-shaped chiral structure with C4 rotational symmetry. Under LCP 

incident light, no THG will be generated. Under RCP incident light, THG with 

opposite polarization will be generated. Figure 3h shows the polarization-dependent 

THG spectra recorded under incident LCP and RCP while the calculated CD of THG 

is shown in Fig. 3i. The experimental results agree with the working principle 

illustrated in Fig. 3g. Usually in 2D planar metasurface, an oblique excitation was 

utilized to induce the nonlinear susceptibility along z-direction which arises from the 
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substrate induced asymmetry. However, in this experiment, the excitation laser was 

normal to the substrate to eliminate the z-direction nonlinear components. A near 

unity nonlinear CD can be achieved only by the in-plane nonlinear tensor components. 

The nonlinear chiral interaction is much stronger than the linear chiral interaction in 

planar chiral structure. 

 

Figure 3. Nonlinear chiroptical effects. (a, b, c) SEM image and SHG microscopy 

images for the “G-shaped” plasmonic structure. (d, e, f) SEM image and SHG 

microscopy images for the “mirror-G-shaped” plasmonic structure. a-f are reproduced 

with permission from ref. [22]. (g) Schematic illustration of the THG generation in a 

Gammadion-shaped plasmonic structure with C4 rotational symmetry. (h-i) 

Polarization-dependent THG spectra with circularly polarized incident light and 
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corresponding calculated CD of THG. g-i are reproduced with permission from ref. 

[23]. 

 

3. Chiral selective light-matter interactions based on chiral plasmonic 

nanostructures 

3.1 Chiral plasmonics enhanced chiral molecule sensing 

 As mentioned before, the fundamental units of life are chiral biomolecules. A 

lot of drugs also contain molecular units with specific chirality. Enantiomers often 

exhibit handedness dependent functions, making it strikingly important to detect the 

chirality of molecules. However, due to the weak chiroptical response of the natural 

chiral molecules, chiral molecule sensing is often challenging at low molecular 

concentration. Artificial chiral plasmonic nanostructures or metasurfaces own the 

capability to generate superchiral electromagnetic fields, leading to promising 

application for ultrasensitive chiral biomolecule sensing [27-31]. For example, a 

planar plasmonic chiral metamaterial (PCM) has been used as probes for the detection 

of large chiral biomolecules with high sensitivity, with the SEM image and CD 

response of the bare PCM shown in Figure 4a [30]. Three resonances were observed 

in the CD spectra, corresponding to the different localized surface plasmon 

resonances (LSPRs) supported by the PCM. After adsorption of biomolecules, the 

change in the refractive index could induce shifts in the LSPRs which would in turn 

modulate the CD spectra of the PCM. Figure 4b shows the CD spectra of the PCMs 

before (red curve) and after (black curve) adsorption of β-lactoglobulin as an example. 

Based on the biomolecule induced shift in the CD spectra with PCM of opposite 

handedness, asymmetry in the refractive index of the biomolecule could be extracted 

which tells the chirality of the biomolecule. With such a PCM, the detection 



14 
 

sensitivity could be largely enhanced, allowing chiral molecule sensing at the 

picogram level.  

Benefiting from the high sensitivity, superchiral evanescent fields of 

plasmonic chiral structures have also been utilized to probe ligand induced 

conformational changes in the higher order hierarchical structure of proteins [31]. 

Figure 4c shows one type of protein, 5-enolpyruvylshikimate 3-phosphate synthase 

(EPSPS) in open format (left) without the presence of ligand, which will transfer to 

the closed format (right) after ligand binding. Figure 4d shows the geometry of the 

chiral plasmonic nanostructure used for the protein higher order structure detection, 

which supports superchiral field that is one order of magnitude higher than circularly 

polarized light. The changes in the optical rotations of the chiral plasmonic structure 

induced by EPSPS adsorption and further ligand binding are clearly seen in Figure 4e. 

Such a level of detection could not be achieved with conventional optical polarimetry 

technique without relying on chiral plasmonic field.  

 Another approach for chiral molecule sensing is to make use of the chiral 

molecule triggered self-assembly of plasmonic nanostructures [32-35]. In that case, 

the fundamental building block can be achiral plasmonic nanostructure, like 

nanoparticle or nanorod, which after self-assembly under the existence of the chiral 

analyte could generate chiral plasmonic field. Using standard chirality detection 

technique, such as CD spectroscopy, the self-assembly induced chiroptical response 

could be followed which reveals the property of the chiral analyte. Figure 4f shows 

the schematic of a chiral nanoparticle heterodimer composed of an Au nanoparticle 

and an Ag nanoparticle bridged by chiral molecule [32]. The chirality of the 

nanoparticle heterodimer originates from the distinct dihedral angle between the two 

individual nanoparticles, as shown in Fig. 4g. The dihedral angle with an opposite 
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sign leads to chiral plasmonic nanostructure of opposite symmetry, i.e., left-

handedness or right-handedness, which is directly determined by the chirality of the 

bridge molecule. Based on this principle, Figure 4h shows the measured CD signal 

induced by the chiral self-assembly of the nanoparticle heterodimer triggered by a 

protein, prostate-specific antigen (PSA), which is a widely used cancer biomarker. 

The CD signal increases with increasing concentration of PSA analyte, due to the 

increased self-assembly yield of nanoparticle heterodimers.  

 

Figure 4. Enhanced chiral molecule sensing based on super-chiral fields. (a) SEM 

images and CD spectra for right- and left-handed PCMs. (b) Modulation of CD 

spectra induced by adsorption of β–lactoglobulin. a and b are reproduced with 

permission from ref. [30]. (c) EPSPS crystal structures in open (left) and closed (right) 

format without and with ligands. (d) Schematic illustration of the chiral plasmonic 

nanostructure used for the sensing of EPSPS higher order structure. (e) Changes in 

measured optical rotation due to immobilized protein and further conformation 

changes of protein induced by ligand. c, d and e are reproduced with permission from 

ref. [31]. (f) Schematic illustration of the chiral nanoparticle heterodimer self-
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assembled via chiral molecular bridge. (g) Schematic illustration of the distinct 

dihedral angle between the two individual nanoparticles determining the chirality of 

the nanoparticle heterodimer. (h) Measured CD response of the nanoparticle 

heterodimers self-assembled in the presence of PSA of different concentration. f, g 

and h are reproduced with permission from ref. [32]. 

 

3.2 Chiral plasmonics modulated quantum emission 

 By integrating chiral plasmonic nanostructures with quantum emitters, the 

chiral light-matter interaction enables chiral selective or artificial chiral quantum 

emission which will find applications in quantum communication, bio-sensing and 

bio-imaging. In principle, the super-chiral field can be quantitatively described by the 

optical chirality density C, , where E and B denote the complex 

electric and magnetic field vectors, respectively [8]. The optical chirality density can 

be seen as an equivalent of the local density of states (LDOS) in electromagnetics, 

which modifies the emission rate of the quantum emitters via Purcell effect [36]. It 

should be noted that there is another explanation that the emitters can simply couple 

to the chiral eigenmodes of the plasmonic nanoantenna, and then emit polarized 

photons [37]. In detail, the chiral plasmonic nanostructures could influence the chiral 

response of the quantum emitters in two ways. On one hand, it could induce increased 

absorption of one particular circularly polarized light depending on the chirality of the 

plasmonic field, resulting in chiral selective enhancement of PL emission. On the 

other hand, the chirality of the plasmonic nanostructures also results in a preferred 

spin state in the PL emission, leading to direct circularly polarized light emission. 

Controlling resonant interaction condition is important to ensure a strong chiral light-

matter interaction in the hybrid system, which requires a frequency overlap between 

*0 ( )
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the resonance of the chiral plasmonic nanostructure and the absorption (or emission) 

of the quantum emitter. 

Figure 5a-b shows the polarization-resolved PL spectra from achiral 

semiconductor quantum dots with and without the existence of the chiral plasmonic 

metasurface [38]. Circularly polarized PL emission (with the degree of circular 

polarization of 17%) was achieved in the presence of the chiral metasurface while PL 

of a negligible degree of circular polarization was obtained in the absence of the chiral 

metasurface. Not only normal PL, but also two-photon luminescence (TPL), which 

belongs to a nonlinear signal, could be efficiently modified by the chiral plasmonic 

near field. The chiral selective enhancement of TPL in CdTe/ZnS core-shell QDs 

have been demonstrated with a chiral arc-shaped plasmonic metasurface, with SEM 

images of the two enantiomers shown in the inset of Fig. 5c and Fig. 5d [39]. With a 

specific plasmonic enantiomer, the TPL enhancement shows a clear contrast for the 

excitation with LCP or RCP, as shown in Fig. 5c for right-handed enantiomer and Fig. 

5d for left-handed enantiomer. The chiral emission from the achiral semiconductor 

holds great potential in applications of spintronics, quantum communication, light 

sources, and so on. 

Furthermore, the superchiral evanescent field of chiral plasmonic 

nanostructures has also been used for tailoring the valley-polarized PL emission in 

two-dimensional transition metal dichalcogenides (TMDs) [40-42]. This type of 

materials owns intrinsic spin–valley degree of freedom and can be useful for 

developing spintronic and valleytronic devices [43-45]. Generally, the TMD 

monolayer has two degenerate but inequivalent valleys (K and K¢) which prefer to 

couple to RCP or LCP, respectively. Under incident circularly polarized light 

excitation, valley-polarized PL emission has been reported for TMDs [46-48]. The 
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degree of valley polarization (DVP), is commonly used to describe the purity of the 

valley-polarized PL emission, which is defined as DVP = (Iσ+−Iσ−)/(Iσ++Iσ−). Iσ+ and 

Iσ− correspond to the circular polarization resolved PL intensities. The intrinsic DVP 

of TMD monolayer is usually not high due to the phonon-assisted intervalley 

scattering. However, in a recent study, with the designed chiral plasmonic 

metasurface, DVP of chemical vapour deposited MoS2 monolayer was increased from 

25% ± 2% to 43% ± 2% under LCP excitation and decreased to 20% ± 2% under RCP 

excitation [41]. The mechanism of the chiral plasmonic modulation of DVP is 

explained in Fig. 5e and Fig. 5f, which shows the energy band of the MoS2 monolayer 

without and with the presence of the chiral plasmonic metasurface, respectively. For 

the bare MoS2 monolayer, under the incident LCP (or RCP) light, exciton formation 

in the K¢ (or K) valley is preferred. A small part of the excitons in the K¢ (or K) valley 

can jump to the opposite K (or K¢) valley via phonon assisted intervalley scattering. In 

the end, more exciton emission happens in the K¢ (or K) valley than in the opposite 

one, resulting in intrinsic valley-polarized PL emission of MoS2 monolayer. However, 

in the presence of chiral plasmonic metasurface with left-handedness, there will be 

two different results. When the hybrid system is excited with LCP, the exciton 

formation in K¢ valley will be enhanced. The phonon assisted intervalley scattering 

from K¢ to K valley may also increase a bit, but not as much as the increased exciton 

formation rate in K¢ valley. Simultaneously, the exciton emission in K¢ valley is also 

enhanced while the opposite happens in K valley. Therefore, the overall effect will be 

increased DVP under LCP excitation. On the contrary, when RCP excitation is 

adopted, the mismatch between the chirality of the plasmonic field and the chirality of 

the incident light will lead to decreased DVP. Figure 5g shows the experimental 

results of DVP for bare MoS2 and MoS2-metasurface hybrid system under LCP and 
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RCP excitation, which agree with the expected one. Moreover, as shown in Fig. 5h, 

when using linearly polarized incident light, circularly polarized PL emission was 

only observed from the hybrid system, but not for bare MoS2, which directly reveals 

the superchiral near field generated by the chiral plasmonic metasurface.  

 

Figure 5. Chiral plasmonics modulated quantum emission. (a, b) Measured 

circular polarization resolved PL spectra for achiral semiconductor quantum dots with 

(a) and without (b) the chiral plasmonic metasurface. Inset shows the SEM image of 

the building block for the chiral plasmonic metasurface. a and b are reproduced with 

permission from ref. [38]. (c) TPL enhancement with right-handed chiral plasmonic 

metasurface under LCP and RCP excitation. Inset shows the SEM image of the right-

handed chiral plasmonic metasurface. (d) TPL enhancement with left-handed chiral 

plasmonic metasurface under LCP and RCP excitation. Inset shows the SEM image of 

the left-handed chiral plasmonic metasurface. c and d are reproduced with permission 

from ref. [39]. (e, f) Schematic illustration of the energy band for bare MoS2 

monolayer (e) and MoS2-chiral plasmonic metasurface hybrid system (f). (g) 
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Experimentally measured DVP for bare MoS2 monolayer and MoS2-chiral plasmonic 

metasurface hybrid system under LCP and RCP excitation. (h) Circular polarization 

resolved PL spectra with linearly polarized laser excitation. e-h are reproduced with 

permission from ref. [41]. 

 

3.3 Chiral selective hot electron transfer 

 Plasmonic hot electrons are generated during the non-radiative decay of 

surface plasmons. They have higher kinetic energy and are excited in larger numbers 

than the normally optically excited electrons, so that they can overcome the potential 

barrier to be injected into semiconductors to drive a wide range of applications, such 

as photodetection, solar energy harvesting, and photocatalysis [49,50]. In addition, the 

timescale of the plasmonic hot electron generation is around hundreds of 

femtoseconds, which ensures the great potential of plasmonic hot electrons for 

applications in ultrafast optical switches and modulators. With engineered artificial 

chiral plasmonic nanostructures or metasurfaces, chiral selective hot electron transfer 

offers the opportunity for convenient detection of circularly polarized light and 

enantioselective catalysis [51-53].  

For example, Fig. 6a shows the schematic of a circularly polarized light 

detector based on chiral selective hot electron transfer in designed chiral plasmonic 

metamaterial in contact with a semiconductor [51]. The chiral plasmonic metamaterial 

has a MIM structure with PMMA layer sandwiched between a “Z-shaped” Ag 

antenna and a flat Ag film. The Ag antenna is in contact with n-type Si to form the 

Schottky junction, allowing plasmonic hot electron injection. When the chirality of 

the plasmonic metamaterial matches with the chirality of the incident circularly 

polarized light, the efficiency of the hot electron generation and transfer is higher than 
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the other case with opposite chirality. Figure 6b-c shows the experimental and 

theoretical responsivity of the circularly polarized light detector for chiral plasmonic 

metamaterial with opposite symmetry. The left-handed metamaterial shows clearly 

enhanced photoresponsivity under LCP illumination than RCP while the opposite 

phenomenon was observed with right-handed metamaterial.  

Figure 6d shows another work studying chiral selective hot electron transfer 

utilizing chiral split-ring plasmonic nanoresonator integrated with TiO2 

semiconductor [52]. The dichroism of the incident photon-to-charge conversion 

efficiency (IPCE) under circularly polarized incident light, as shown in Fig. 6e, shows 

a similar shape to the CD response of the sample measured based on extinction. 

Further, Fig. 6f presents the dichroism of the cathodoluminescence (CL) spectrum 

measured from the chiral split-ring plasmonic nanoresonator. Based on the dichroic-

sensitive CL imaging, the chiral response of the split-ring structure was attributed to 

the polarization dependent distributions of electric field hot spots. It was also found 

that there is a clear positive correlation between the calculated plasmonic hot carrier 

distribution and the spatial distributions of CL signal, pointing to the application of 

CL imaging technique for the rational design of hot electron based devices.  
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Figure 6. Chiral selective hot electron transfer. (a) Schematic illustration of the 

circularly polarized light detector composted of a plasmonic chiral metamaterial in 

contact with n-type Si semiconductor. (b,c) Experimental and theoretical responsivity 

of the photodetector with left- (b) and right- (c) handed metamaterial under the 

illumination of circularly polarized light. a-c are reproduced with permission from ref. 

[51]. (d) Schematic illustration of chiral selective hot electron transfer at the interface 

between chiral split-ring plasmonic nanoresonator and TiO2. (e) CD of IPCE and CD 

of extinction measured from the same device. (f) CD of CL for the chiral split-ring 

plasmonic nanoresonator. d-f are reproduced with permission from ref. [52]. 

Though various chiral structures are realized in different studies, they share 

the same principle that the chirality is originated from the mirror symmetry break of 

the structure and can be quantified with the optical chirality density as we discussed. 

In order to optimize the chiral light-matter interaction, the resonance wavelength of 

the chiral structure must be matched with the emission or absorption wavelength of 

the emitter, or matched with the excitation laser wavelength. 
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4. Conclusion 

 In summary, this article provides a brief review on the current progress of 

chiral plasmonics and associated chiral light-matter interactions for applications in 

biosensing, PL modulation and hot-electron based light harvesting. Here we hope to 

propose some future research directions for this field. 

 Regarding chiral sensing, the enhanced sensitivity is the most remarkable 

feature for biomolecule sensing with chiral plasmonic nanostructures or metasurfaces. 

However, the reported sensitivity, as we know, requires at least several tens of 

molecules per unit structure [29]. Hence, single molecule detection with single chiral 

plasmonic nanoantenna would be one of the future directions in this field. Such 

detection may be facilitated by chiral molecules containing emitting group. Since 

single molecule photoluminescence has been widely investigated [54], the chiroptical 

response in PL will tell the chirality of the studied molecule. 

 Chiral selective chemical or biological reaction will be extremely important 

and definitely worth continuous efforts. It is well-known that a lot of biomolecules 

and drugs are chiral molecules that the two enantiomers often exhibit very different 

functions. Currently, the fabrication or synthesis products are typically mixture of the 

two enantiomers such that complex separation procedures are needed to select the one 

with preferred function. It would be great if the coupling with chiral plasmonic 

nanostructures could guide the chiral selective synthesis of only one of the two 

enantiomers. 

The angular momentum of light contains two freedom, namely, the spin and 

orbital angular momentum (SAM and OAM). The SAM is related to the circular 

polarization while the OAM is associated with the helical phase of the light. SAM and 
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OAM of the light can be encoded for the light communication. The chiral plasmonic 

structures offer the possibility to engineer the SAM and OAM and the interaction 

between them. It has been reported that the spin of light can control the OAM by 

utilizing the nonlinearity of the chiral metasurface [25]. The chiral plasmonic 

controlled angular momentum of light holds great research interest in the future. 

 Another promising direction is chiral plasmonic circuit which enables circular 

polarization controlled on-chip information communication and processing. The 

principle of unidirectional surface plasmon propagating or routing controlled by 

circularly polarized light has been demonstrated in the literature [55, 56]. On one 

hand, direct circularly polarized light emission from chiral plasmonics coupled 

quantum emitters was reported [38, 41, 42] which can be used as the plasmon source 

in the integrated chiral plasmonic chip. On the other hand, chiral plasmon detector can 

be made of chiral plasmonic nanostructures in contact with semiconductor which 

works based on the chiral selective hot electron transfer [51, 52]. By combing these 

different elements together, the simplest optically or electrically driven chiral 

plasmonic circuit is ready to be developed. 

 The development of artificial chiral nanostructures will also require new 

approaches to probe chirality at the nanoscale. Up to this work, reported works used 

near-field optical microscopy [57] and cathodoluminescence [58] to image chiral 

optical fields with sub-wavelength resolution. Electron spectroscopies, and notably 

electron energy-loss spectroscopy (EELS) has recently emerged as a powerful tool for 

the nanoscale analysis of plasmonic structures [59]. It was theoretically demonstrated 

that phase-shaped (vortex) electron beams could probe dichroism via a transfer of 

OAM between the electron beam and the chiral structure [60]. As very recent 

experimental developments using magnetic phase plates have demonstrated the 
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generation of electron vortex beams [61], the possibility to probe and map the chiral 

modes of plasmonic nanostructures inside an electron microscope now seems feasible.     

Last but not the least, time-scale studies, such as time-resolved PL or pump-

probe spectroscopy, may be used to trace the dynamics of self-assembly with chiral 

template, chiral selective PL enhancement or hot electron transfer, providing useful 

information for better understanding of the chiral light-matter interactions. 
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