
HAL Id: hal-02363229
https://utt.hal.science/hal-02363229v1

Submitted on 14 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a standard protocol for community-driven
organizations of knowledge

Chao Zhou, Christophe Lejeune, Aurélien Bénel

To cite this version:
Chao Zhou, Christophe Lejeune, Aurélien Bénel. Towards a standard protocol for community-driven
organizations of knowledge. Concurrent Engineering, Sep 2006, Antibes, France. pp.438-449. �hal-
02363229�

https://utt.hal.science/hal-02363229v1
https://hal.archives-ouvertes.fr

Towards a standard protocol
for community-driven

organizations of knowledge
Chao Zhou, Christophe Lejeune, Aurélien Bénel

Laboratoire Tech-CICO, Institut Charles Delaunay (FRE CNRS)
Université de Technologie de Troyes

Abstract. This paper deals with the “Web 2.0”, where every user can contribute to
the content, “harnessing collective intelligence”. After studying what makes the
success of services like Google Base, Del.icio.us and the Open Directory Project,
we propose a unifying “REST” protocol for this kind of community-driven
organizations of knowledge. The aim is to make the collaboration possible beyond
the boundaries of the software and of the resulting communities.

Keywords. Web 2.0, Communities, Knowledge Management, REST Web
services.

Introduction

The future of the Web was planned to be a Semantic Web with “content that is
meaningful to computers” [2]. What we got instead is a Web 2.0, where every user can
contribute to the content, “harnessing collective intelligence” [14].

One should note that the move is not only from a formal semantics to a social one,
but also from an innovation process lead by a consortium to a new one lead by
independent socio-economic actors. The drawback of such a process is the resulting
“babelization” between the different software services which makes it difficult to
collaborate between the different user communities.

In the following pages, we will focus on community-driven organizations of
knowledge. After studying what makes the success of Google Base, Del.icio.us, and the
Open Directory Project, we will propose a unifying infrastructure for this kind of
services.

1. Success stories

1.1. Google base

Google Base1 is a “beta” service by Google which allows anybody to:
- Create an item of any type and describe it,
- Look for items satisfying to criteria.
This service is intended to become the worldwide database for any type of items (even
scientific ones like genes). For now, it is mainly used for classified ads (dating,
housing, used cars…).

In fact, the data structure of Google Base reminds the one of the old Machine
Readable Catalogue (MARC, still in use in public libraries) in the way it is “schema
neutral”. As MARC came in different “flavors” (LCMARC, UKMARC, UNIMARC…)
chosen by librarians to fit their books and patron needs [10], Google Base allows the
user to use any attribute names (existing or new ones) to fit her item type and her needs
(cf. Fig.1).

Nevertheless, the “report bad item” feature could indicate an interesting gap
between the social process involved in Google Base and the library sciences goal of
objectivity. That could be the reason why this universal database is in fact used only
when the user owns the item (cf. Fig.1) and therefore is the only person who can
describe it.

Fig.1 – Reverse engineering of Google Base (UML class diagram)

1.2. Del.icio.us

Del.icio.us2, a service first created as a hobby and now owned by Yahoo!, allows
anyone to:
- Keep a bookmark of a web item and describe it with free keywords (called “tags”),
- Share them with other users,
- Discover new items by browsing popular and related tags,
- Make one’s own description to existing items.
Del.icio.us aims at creating a directory of web pages by putting together a bunch of
personal bookmarks. In order to gain objectivity, they had chosen a democracy-like
model where every opinion can be expressed but is considered to be significant only
when it is shared by a lot of people.

1 http://base.google.com/
2 http://del.icio.us/

In a way, the data structure of Del.icio.us (and other similar “folksonomies” like
Flickr) reminds the one from Xanadu: “the original hypertext project” [13] in which
users were able to reuse fragments and links in different “documents”. But the
difference between a “document” and a “tag” is that a tag is not owned by a user. The
tag is collective and therefore only the statement saying that a document is described
by a tag is attributed to a user (cf. Fig.2). But, are the tags “mydog” and “todo” really
collective [11]? Do these tags even mean something in a shared place? In the same
way, does “apple” mean the same thing for geeks, cookers and New Yorkers? To be
really collective, tags should be defined inside a “viewpoint”: a language used by a
community. Then it would not be the same “apple” tag, just as “pain” is not the same in
English and in French.

Fig.3 – Reverse engineering of Del.icio.us (UML class diagram)

1.3. The Open Directory Project

As all directories, the Open Directory Project1 is a tool to help users locating
information on the Internet. The website home page of the project proposes some
general topics as a starting point of the query. Crawling from general topics towards
more and more specialized rubrics, the user can specify her query so that (and up to)
she will find a list of websites containing the information he is searching.

A directory is thus a hierarchical structure of categories. The main top category
contains all the others (it stands as the front menu of the home page). This menu
features a dozen of general topics (such as arts, sciences or health). Each of these
general categories contains a branch of imbricated sub-categories and websites
references.

Leaving the user’s point of view for the designer’s one, the Open Directory
Project is a community of volunteer editors. Each editor maintains (at least) one
category (which means that editors are thematically skilled). She is responsible for all
the content of this category. This includes recording websites, describing the category,
inserting sideways links, and managing all subsequent subcategories. The core business
of the editor is to provide the directory with website references. This includes, for each
recorded web sites, to insert an address (URL), a title and a short text describing its
content. Editors also redact the description for the rubric they are in charge and insert
sideways links from category (these links are described hereunder).

The fact that they can manage subcategories means that scopes of action differ
from one person to another. This situation leads to propose that the thematic tree is
coupled by a social tree (with social issue in selected cases).

1 http://www.dmoz.org/

The aim of the community (as a whole) is to propose an alternative to other
information retrieval tools. The ultimate purpose is to provide users with a tool giving
more adequate results than search engines. The very idea resides in that:
- The path of the categories situates and contextualizes the information (contrary to

keywords query introduced in the input field of a search engine front page),
- Each reference is described by an expert.

Fig.2 – Reverse engineering of the Open Directory project (UML class diagram)

Founders of directories face two problems. The first is related to human resources,
the second with tree structure. Given that directories databases are constructed by
humans (contrary to search engines that are computer-processed), these projects need
large teams of skilled specialists. This core weakness is solved in the case of the Open
Directory Project, thanks to its organization in a community of benevolent contributors
(as free software programmers).

The second problem is the tree structure of the database front end. Even if this
shape organizes the information, it can yield to locate some rubrics that concern close
topics in different branches. This raises usability problems. Used to this question
(through similar tools as thesauruses), information scientists solve the issue with
sideways relations that allow the user to glance through the database. Known as
“related terms”, these horizontal bridges are indicated by the “see also” heading [1].
Directories feature also such relations. In the Open Directory Project, they are of three
kinds: related categories, alternate language and symbolic links.

As signaled by the name, related categories implement a relation similar to the
“see also” link from thesauruses. The complete path and name of the target categories
are featured and the target (sister) category is considered to cover a close theme to the
origin category. The relation can be reciprocal but this is not necessary.

Alternate language links relate categories that cover the same theme in different
language. This means that the global tree of the Open Directory Project includes
duplicate hierarchies in each language. This division was not in the original model but
was introduced when more and more non-English members join the project. At a first
stage, language branches were created and relations between them were indicated with
the related categories features. Then (late 2000), the alternate language link was
introduced. The link only indicates the name of the language to which the target
category belongs (only one equivalent by language is permitted).

The symbolic links are sideways relations that include a peculiar semantics. The
target category can be considered as a subcategory (a child) of the origin category.
Symbolic links are listed among other effective sub-rubrics and are signaled and
distinguished from the latter by a trailing “at sign” (@). Neither the path, nor the name
of the target category is featured; the name of the symbolic link is chosen by the
indexer.

2. Towards a unifying infrastructure

The following section describes the HyperTopic protocol, named from the underlying
data model: the HyperTopic Model [6]. Our goal is to propose this protocol as a
standard for services aiming at community-driven organizations of knowledge.

The protocol is designed in a “REST” style to achieve visibility, reliability and
scalability. REST is an acronym standing for “Representational State Transfer”. REST
is not a standard; it is an architectural style for distributed network systems [9]. The
motivation of REST was to find out which characteristics made the web successful, and
use these characteristics to guide the evolution of the web [7]. An important rule in
REST is that every resource should have one URI. The components in the distributed
system could use a set of HTTP methods (POST, PUT, GET, and DELETE) to
manipulate those resources. Representations in REST style protocol usually are HTML
or XML files that contain information and links to other resources. The components of
the distributed system can navigate from one state of representation to another state,
simply by following the links.

2.1. Objects URI

One of the most important characteristics of REST is about exposing resources through
URIs [12]. There are different types of object in the HyperTopic model (Fig.4): Actor,
Viewpoint, Topic, Entity, and Attribute. All of those should be uniquely addressable
through URIs. A client could realize representational state transfer from one object to
another object (e.g. from viewpoint to topics, or from topics to entities) by following
those URI.

Fig.4 – The HyperTopic Model (UML class diagram)

Actor

The actors involved in reading and writing viewpoints are identified by a login.
Assuming there were on www.example.org an actor whose login is ‘linuxfans’, its URI
would be: http://www.example.org/actor/linuxfans/

Viewpoint

According to user’s roles, a user could visit or manage one or several viewpoints by
their URI. Assuming there were on www.example.org a viewpoint which ID is 1, its
URI would be: http://www.example.org/viewpoint/1/

Topic

Every topic must belong to one and only one viewpoint. The URI of that topic will
contain the viewpoint identifier and use hierarchical structure to represent the
relationship between viewpoint and topic. The URI of topic #2 from viewpoint #1
would be: http://www.example.org/viewpoint/1/topic/2

Entity

Every entity should have one URI. An entity is defined by a persistent name. For
example, the URI of the “Amaya” software entity would be:
http://www.example.org/entity/AMAYA/

Attribute value

An attribute value is identified by its name and its value. For example, the URI of
‘INRIA’ as an ‘author’ is: http://www.example.org/attribute/author/INRIA/

2.2. XML structure

In the HyperTopic protocol, software and service transfer data in XML streams. The
following tables describe the HyperTopic document format. Those tables use standard
XPath notation, slashes to show the element hierarchy, and an “at sign” indicates the
attribute of an element.

Actor

XPath Cardinality Description
/actor/@name Optional Actor Name.
/viewpoint * Viewpoints which this actor

could visit or manipulate
/viewpoint/@xlink:href Required Viewpoint URI

Viewpoint

XPath Cardinality Description
/viewpoint/@name Optional Viewpoint Name.
/viewpoint/actor * Actor which could visit or manipulate

this viewpoint
/viewpoint/actor/@xlink:href Required Actor URI
/viewpoint/topic * Topics which are linked to the

viewpoint.
/viewpoint/topic/@xlink:href Required Topic URI.

Topic

XPath Cardinality Description
/topic/@name Optional Topic Name.
/topic/viewpoint 1 Viewpoint which the topic

belongs to.
/topic/viewpoint/@xlink:href Required Viewpoint URI.
/topic/relatedTopic * Topics linked to the current topic

Note: The related topics should
be in the same viewpoint.

/topic/relatedTopic/@relationType Optional The relation type between the
current topic and the related
topic.

/topic/relatedTopic/@xlink:href Required Related topic URI.
/topic/relatedTopic/@status Optional Status of related topic (active or

inactive).
/topic/entity * Entities described by the topic.
/topic/entity/@xlink:href Required Entity URI.
/topic/entity/@status Optional Status of the link to the entity

(active or inactive).

Entity

XPath Cardinality Description
/entity/attributeValue * Attribute values which belong to

the Entity.
/entity/attributeValue/@xlink:href Required Attribute value URI.
/entity/attributeValue/@status Optional Status of the link to the attribute

value (active or inactive).
/entity/topic * Topics which describes the

Entity.
/entity/topic/@xlink:href Required Topic URI.
/entity/topic/@status Optional Status of the link to the topic

(active or inactive).

Attribute Value

XPath Cardinality Description
/attributeValue/entity * Entities described by the

attribute value.
/attributeValue/entity/@xlink:href Required Entity URI.
/attributeValue/entity/@status Optional Status of the link to the

attribute value (active or
inactive).

2.3. HTTP Methods and Status Codes

In a RESTful protocol, a client can use GET method to retrieve resources. Use POST
method to create a new resource with new URI. For example, a client can send POST
request with XML payload to URI “/viewpoint/” to create a new viewpoint. After the

successful execution, the server will return a newly created URI with status code 201.
The PUT method is used to create a new resource or to replace an existing resource
with URI. If the request-URI refers to an existing resource, the server will replace the
resource with the enclosed resource. If the request-URI does not point to an existing
resource, the server would create the resource with that URI. In the HyperTopic
protocol, to trace the changes, the DELETE method does not actually delete the
resource but just inactivate it.

The following table describes what the status codes mean in HTTP.
Code Details
200 OK The request has succeeded.
201 CREATED The request has been fulfilled and resulted in a new

resource being created.
205 RESET CONTENT Modification of a resource has succeeded.
400 BAD REQUEST The request could not be understood by the server due to

malformed syntax.
403 FORBIDDEN The server understood the request, but is refusing to

fulfill it.
404 NOT FOUND The server has not found anything matching the Request-

URI.
500 INTERNAL
SERVER ERROR

The server encountered an unexpected condition which
prevented it from fulfilling the request.

The following table gives the typical status codes in the HyperTopic protocol that could
be returned.

Actor

 Description 200 201 205 400 403 404 500
GET To get actor
PUT To create or update

actor.

Viewpoint

 Description 200 201 205 400 403 404 500
GET To get viewpoint list.

To get viewpoint

POST To create viewpoint.
PUT To update viewpoint.
DELETE To trace changes, we do not really delete the viewpoint, and instead we

just inactivate it.

Topic

 Description 200 201 205 400 403 404 500
GET To get topic.
POST To create topic. To

update topic.

DELETE To trace changes, we do not really delete the topic; instead we just
inactivate it.

Entity

 Description 200 201 205 400 403 404 500
GET To get entity.
PUT To create entity or

update entity.

Attribute Value

 Description 200 201 205 400 403 404 500
GET To query attribute

value

PUT To add new attribute
value or update
attribute value.

2.4. Other resources

Although a client can enter the framework by actors URI, it could also do it by other
special resources URIs. Those URIs will be used through GET methods only.

A client could use the following URIs to know the existing viewpoints:
http://www.example.org/viewpoint/

The following table shows the format of viewpoint list:
XPath Cardinality Description
/viewpoints/viewpoint * Viewpoint
/viewpoints/viewpoint/@xlink:href Required Viewpoint URI

To know the existing attribute names, a client would use the following URI:
http://www.example.org/attribute/

The following table shows the format of attribute list:

XPath Cardinality Description
/setOf/attributeName * Attribute name.
/setOf/attributeName/@xlink:href Required Attribute name URI.

A client would use the following URI in order to know the existing values for an
attribute name: http://www.example.org/attribute/author/

The following table shows the format of attribute list:

XPath Cardinality Description
/attributeName/value * Attribute values.
/attributeName/value/@xlink:href Required Attribute URI.

A client could query an attribute. The query URI consists of an attribute URI and a
SQL-like clause. For example: in order to find out the entities whose “type” is
“Software”, the URI would be:
 http://www.example.org/attribute/type/upper(value)=’SOFTWARE’

XPath Cardinality Description
/setOf/attributeValue * Attribute values

corresponding to the
clause.

/setOf/attributeValue/@xlink:href Required Attribute value URI.
/setOf/attributeValue/entity * Entities described by this

attribute value.
/setOf/attributeValue/entity/@xml:href Required Entity URI.

Conclusions and future works

This paper challenges the future of the Web, to be related with socially (rather than
ontologically) organized knowledge. We started with the description of three
collaborative actual projects. Even though composed of volunteer lay people, these
three communities exhibit peculiarities in the way knowledge is organized inside them.
Our challenge was to propose a unified infrastructure for these. Based on the
HyperTopic data model, we introduced the HyperTopic protocol to reach this aim.

After having implemented the server side of the project in Argos, we are currently
working on the client side. This work is achieved by modifying two existing software:
Agorae [5] and Porphyry [4]. The first one is a virtual marketplace allowing users to
propose and describe material and immaterial goods (Fig. 5). The later is a digital
library where scholars can publish and interpret differently document corpora (Fig. 6).
Both of these software systems have been used by experts sharing their knowledge in
collaborative project. Each user can construct her own viewpoint. A viewpoint can also
be managed by groups of agreed individuals. This assumes that exposing concurrent
view could fruitfully regulate and federate the community [15].

Once Agorae and Porphyry are adapted to conform to the HyperTopic protocol, we
are willing to propose this protocol as a standard draft to a normalization organization.

Fig.5 – “YEPOSS: Yellow pages for open source software” [6] (Agorae screenshot)

Fig.6 – “China in the 30s: Making history from photographs” by C. Henriot and C. Cornet from the “Institut
d’Asie orientale” (Porphyry screenshot)

References

[1] Aitchison J., Gilchrist A., Bawden D., Thesaurus Construction and Use: A Practical Manual, Chicago :
Fitzroy Dearborn Publishers, 2000.

[2] Berners-Lee T., Hendler J., Lassila O., The Semantic Web, Scientific American, May 2001. Available
on: <http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF2>

[3] Berners-Lee T., Fielding R., Masinter L., Uniform Resource Identifier (URI): Generic Syntax,
RFC 3986, The Internet Society, January 2005. Available on: <http://www.ietf.org/rfc/rfc3986.txt>

[4] Bénel A., Calabretto S., Iacovella A., Pinon J.-M. Porphyry 2001: Semantics for scholarly publications
retrieval, Proceedings of the thirteenth International Symposium on Methodologies for Intelligent
Systems, Lecture Notes in Artificial Intelligence #2366. Berlin: Springer-Verlag, 2002. p.351-361.
Available on: <http://www.porphyry.org/Members/abenel/benel_ISMIS_02.pdf>

[5] Cahier J.-P., Zacklad M., Towards a Knowledge-Based Marketplace model for cooperation between
agents. Proceedings of COOP'2002 Conference, Amsterdam: IOS Press, 2002. Available on Internet:
<http://www.sociosemanticweb.org/jean-pierre/Coop2002.pdf>

[6] Cahier J.-P. Zaher L’H.. Leboeuf J.-P., Pétard X., Guittard C., Experimentation of a socially
constructed “Topic Map” by the OSS community, Proceedings of the IJCAI-05 workshop on
Knowledge Management and Ontology Management, Edinburgh, August 1, 2005. Available on:
<http://www.limsi.fr/~xpetard/articles/cah-et-al-OM2005-Final.pdf>

[7] Costello R. L., Building Web Services the REST Way. Available on:
<http://www.xfront.com/REST-Web-Services.html>

[8] Fielding R., Gettys J., Mogul J., Frystyk H., Masinter L., Leach P., Berners-Lee T., Hypertext Transfer
Protocol – HTTP/1.1, RFC 2616, The Internet Society, June 1999. Available on:
<http://www.ietf.org/rfc/rfc2616.txt>

[9] Fielding R., Architectural Styles and the Design of Network-based Software Architectures, PhD thesis,
University of California, Irvine, 2002. Available on:
<http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm>

[10] Furie B., Understanding MARC Bibliographic: Machine-Readable Cataloging, Washington: Library of
Congress, 1998. Available on: <http://www.loc.gov/marc/umb/>

[11] Guy M., Tonkin E., Folksonomies: Tidying up Tags?, D-Lib Magazine, Volume 12 Number 1, January
2006. Available on: <http://www.dlib.org/dlib/january06/guy/01guy.html>

[12] Gregorio J., How to Create a REST Protocol. Available on:
<http://www.xml.com/lpt/a/2004/12/01/restful-web.html>

[13] Nelson T. H., Xanalogical Structure Needed Now More Than Ever, In: ACM Computing Surveys,
Volume 31, Issue 4, Article 33, ACM Press, 1999. Available on:
< http://www.cs.brown.edu/memex/ACM_HypertextTestbed/papers/60.html>

[14] O'Reilly T., What is Web 2.0: Design Patterns and Business Models for the Next Generation of
Software, September 30, 2005. Available on:
<http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html>

[15] Simmel G., Conflict & the Web of Group Affiliations, New York: Free Press, 1955.

