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Abstract

proposed approach.

This paper investigates the statistical detection of JSteg steganography. The approach is based on a statistical model
of discrete cosine transformation (DCT) coefficients challenging the usual assumption that among a subband all the
coefficients are independent and identically distributed (i.i.d.). The hidden information-detection problem is cast in
the framework of hypothesis testing theory. In an ideal context where all model parameters are perfectly known, the
likelihood ratio test (LRT) is presented, and its performances are theoretically established. The statistical performance
of LRT serves as an upper bound for the detection power. For a practical use where the distribution parameters are
unknown, by exploring a DCT channel selection, a detector based on estimation of those parameters is designed. The
loss of power of the proposed detector compared with the optimal LRT is small, which shows the relevance of the

Keywords: hypothesis testing theory; JSteg steganalysis; DCT distribution model; Hidden information detection

1 Introduction

Steganography and steganalysis have received more and
more focus in the past two decades since the research in
this field concerns law enforcement and national strate-
gic defence. Steganography is the art and science of hiding
secret messages in the cover media. On the opposite,
steganalysis is about the detection of hidden secret infor-
mation embedded in the cover media, also called stego
media. If a steganalysis algorithm detects the inspected
media as the stego one, even without knowing any extra
information about the secret message, the steganographic
approach fails.

1.1 State of the art

In today’s digital world, there exists many steganographic
tools available on the Internet. Due to the fact that some
are readily available and very simple to use, it is neces-
sary to design the most reliable steganalysis methodology
to fight back steganography. In general, due to its sim-
plicity, most steganographic schemes insert the secret
message into the least significant bit (LSB) plane of the
cover media, including two kinds of steganography: LSB
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replacement and LSB matching. The former algorithm
aims at replacing the LSB plane in the spatial domain or
frequency domain of the cover media by 0 or 1. The lat-
ter algorithm, also known as +1 embedding (see [1-3]),
randomly increments or decrements a pixel or discrete
cosine transformation (DCT) coefficient value to match
the secret bit to be embedded when necessary. Since LSB
replacement is easier to implement, it remains more pop-
ular, and hence, as of December 2011, WetStone declared
that about 70% of the available steganographic soft-
wares are based on the LSB-replacement algorithm [4].
Therefore, the research on LSB-replacement steganalysis
remains an active topic.

Although the LSB-replacement steganalysis method
(see [5-10]) has been studied for many years, it can be
noted that most of the prior-art detectors are designed
to detect data hidden in the spatial domain. In addition,
for only a few detectors, the statistical properties have
been studied and established, referred to as the optimal
detectors. As detailed in [11], a wide range of prob-
lems, theoretical as well as practical, remain uncovered
and some prevent the moving of ‘steganography and ste-
ganalysis from the laboratory into the real world’. This
is especially the case in the field of optimal detection,
see ([11] , sec. 3.1), in which this paper lies. Roughly
speaking, the goal of optimal detection in steganalysis is
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to exploit an accurate statistical model of cover source,
usually digital images, to design a statistical test whose
properties can be established, typically, in order to guar-
antee a false alarm rate (FAR) and to calculate the optimal
detection performance one can expect from the most
powerful detector.

In 2004, the weighted stego-image (WS) method [12]
and the test proposed in [13] for LSB-replacement ste-
ganalysis changed the situation opening the way to
optimal detectors. Driven by these pioneer works, the
enhanced WS algorithm proposed in [14] improved the
detection rate by enhancing pixel predictor, adjusting
weighting factor and introducing the concept of bias cor-
rection. Nevertheless, the drawback of the original WS
method is that it can only be applied in the spatial domain.
Due to the prevalence of images compressed in the Joint
Photographic Experts Group (JPEG) format, how to deal
with this kind of images becomes mandatory. Inspired by
the prior studies [12,14], the WS steganalyser for JPEG
covers was proposed in [15]. However, the WS steganal-
yser does not allow one to get a high-detection perfor-
mance for a low FAR, see [16], and its statistical properties
remain unknown, which prevents the guarantee of a pre-
scribed FAR. In practical forensic cases, since a large
database of images needs to be processed, the getting of a
very low FAR is crucial.

1.2 Contributions of the paper

For the detection of data hidden within the DCT coef-
ficients of JPEG images, the application of hypothesis
testing theory for designing optimal detectors that are
efficient in practice is facing the problem of accurately
modelling statistical distribution of DCT coefficients. It
can be noted that several models have been proposed in
the literature to model statistically the DCT coefficients.
Among those models, the Laplacian distribution is prob-
ably the most widely used due to its simplicity and its
fairly good accuracy [17]. More accurate models such as
the generalized Gaussian [18] and, more recently, the gen-
eralized gamma model [19] have been shown to provide
much more accuracy at the cost of higher complexity.
Some of those models have been exploited in the field of
steganalysis, see [20,21] for instance. In the framework of
optimal detection, a first attempt has been made to design
a statistical test modelling the DCT coefficient with the
quantized Laplacian distribution, see [22].

It should be noted that other approaches have been
proposed for the detection of data hidden within DCT
coefficients of JPEG images, to cite a few, the structural
detection [23], the category attack [24], the WS detec-
tor [15] and the universal or blind detectors [25,26].
However, establishing the statistical properties of those
detectors remains a difficult work which has not been
studied yet. In addition, most accurate detectors based
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on statistical learning are sensitive to the so-called cover-
source mismatch [27]: the training phase must be per-
formed with caution.

In this context, the detector proposed in [22] is an inter-
esting alternative; however, it is based on the assumption
that DCT coefficients are independent and identically
distributed (i.i.d.) within a subband and have a zero
expectation which might be inaccurate and hence make
the detection performance poor in practice. In practice,
this model is not independent of the image content, which
performs well only in the case of a high-texture image
(see Figure la), but hardly holds true in the case of a
low-texture image (see Figure 1b). On the opposite, this
paper proposes a statistical model assuming that each
DCT coefficient has a different expectation and variance.
The use of this model, together with hypothesis theory,
allows us to design the most powerful likelihood ratio test
(LRT) when the distribution parameters (expectation and
variance) are known. Then, in the practical case of not
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Figure 1 lllustration of the quantized DCT coefficient subband
(2,1), (a) a high-texture image: baboon, (b) a low-texture image:
sky.
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knowing those parameters, estimations have to be used
instead; this leads to the design of the proposed detector
with estimated parameters. By taking into account those
distribution parameters as nuisance parameters and using
an accurate estimation, it is shown that the loss of power
compared with the optimal detector is small.

Therefore, the contributions of this paper are as follows:

1. First, a novel model of DCT coefficients is proposed;
its major originality is that this model does not
assume that all the coefficients of the same subband
arei.i.d.

2. Second, assuming that all the parameters are known,
this statistical model of DCT coefficients is used to
design the optimal test to detect data hidden within
JPEG images with JSteg algorithm. This statistical
test takes into account distribution parameters of
each DCT coefficient as nuisance parameters.

3. Further, assuming that all the parameters are
unknown, a simple approach is proposed to estimate
the expectation (or location) parameter of each
coefficient by using linear properties of DCT as well
as estimation of pixel expectation in the spatial
domain; the variance (or scale) parameter is also
estimated locally.

4. The designed detector is improved by exploring a
DCT channel selection, which has been proposed
very recently [28,29] that selects only a subset of
pixels or DCT coefficients in which embedding is
most likely and hence detection easier.

5. Numerical results show the sharpness of the
theoretically established results and the good
performance of the proposed statistical test. A
comparison with the statistical test based on the
Laplacian distribution and on the assumption of
i.i.d. coefficient, see [22], shows the relevance of the
proposed methodology. In addition, compared with
prior-art WS detector [15], experimental results
show the efficiency of the proposed detector.

1.3 Organisation of the paper

This paper is organised as follows. Section 2 formalises
the statistical problem of detection of information hidden
within DCT coefficients of JPEG images. Then, Section 3
presents the optimal LRT for detecting the JSteg algorithm
based on the Laplacian distribution model. Section 4
presents the proposed approach for estimating the nui-
sance parameters in practice and compares our proposed
detector with the WS detector [15] theoretically. Finally,
Section 5 presents numerical results of the proposed ste-
ganalyser on simulated and real images, and Section 6
concludes this paper. This paper is an extended version
of [30] that also includes the findings of [31] on channel
selection [28,29].

Page30f 16

2 Problem statement

In this paper, a grayscale digital image is represented, in
the spatial domain, by a single matrix Z = {z;;},i €
{1,...,1},j € {1,...,]J}. The present work can be
extended to a colour image by analysing each colour chan-
nel separately. Most digital images are stored using the
JPEG compression standard. This standard exploits the
linear DCT, over blocks of 8 x 8 pixels, to represent
an image in the so-called DCT domain. In the present
paper, we avoid the description of the imaging pipeline
of a digital still camera; the reader can refer to [32] for a
description of the whole imaging pipeline and to [33] for a
detailed description of the JPEG compression standard.

Let us denote DCT coefficients by the matrix V. =
{vij}. An alternative representation of those coefficients
is usually adopted by gathering the DCT coefficients that
correspond to the same frequency subband. In this paper,
this alternative representation is denoted by the matrix
U = {m)k € (1,...,K},1 € {1,...,64} with K ~
I % J/642.

The coefficients from the first subband u;;, often
referred to as direct current component (DC) coefficients,
represent the mean of pixel value over a k-th block of
8 x 8 pixels. The modification of those coefficients may be
obvious and creates artifacts that can be detected easily;
hence, they are usually not used for data hiding. Similarly,
the JSteg algorithm does not use the coefficients from the
other subbands, referred to as alternating current compo-
nent (AC) coefficients, if they equal 0 or 1. In fact, it is
known that using the coefficients equal to 0 or 1 modifies
significantly the statistical properties of AC coefficients;
this creates a flaw that can be detected.

The JSteg algorithm embeds data within the DCT
coefficients of JPEG images using the well-known LSB-
replacement method, see details in [34]. In brief, this
method consists of substituting the LSB of each DCT
coefficient by a bit of the message it is aimed to hide. The
number of bits hidden per coefficient, usually referred to
as the payload, is denoted R € (0, 1]. Since the JSteg algo-
rithm does not use each DCT coefficient, the payload will
in fact be measured in this paper as the number of bits
hidden per usable coefficients (that is the number of bits
divided by the number of AC coefficients that differ from
Oand1).

Let us assume that the DCT coefficients are indepen-
dent and that they all follow the same probability dis-
tribution, denoted Py, parametrised by the parameter 6
which may change among the coefficients. Since the DCT
coefficients can only take value into a discrete set, the dis-
tribution Py may be represented by its probability mass
function (pmf) denoted Py = {pg[u]}; for simplicityb, it
is assumed in this paper that # € Z. Let us denote Qg the
probability distribution of usable DCT coefficients from
the stego-image after embedding a message with payload
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R. A short calculation shows that, see [8,12,13], the stego-
image distribution may be represented by following the

pmf Qg = {qg[u] }ueZ where:

qalul = (1 — R/2)p[u] +R/2py i), 1)

and # = u + (—1)* represents the integer u with flipped
LSB. For the sake of clarity, let us denote 6 the distri-
bution parameter of the k-th DCT coefficient from the
[-th subband and let ¢ = {6}, k € {1,...,K},] €
{2,...,64} represent the distribution parameter of all the
AC coefficients.

When inspecting a given JPEG image, more precisely
its DCT coefficients matrix U, in order to detect data
hidden with the JSteg algorithm, the problem consists in
choosing between the two following hypotheses: Hy: ‘the
coefficients uy; follow the distribution Py, ," and Hi: ‘the
coefficients uy ; follow the distribution ngl’ which can be
written formally as: '

Ho : {urs ~ P, Yk € {1,...,K},VI € {2,...,64}},
H : {uk,, ~QF Vkell,...,K}Vle {2,...,64}}.
(2)

A statistical test is mapping § : Z!7 > {Ho, H1} such
that hypothesis #; is accepted if §(U) = H,; (see [35]
for details on hypothesis testing). As previously explained,
this paper focuses on the Neyman-Pearson bi-criteria
approach: maximising the correct detection probability
for a given false alarm probability «. Let:

Koy = {5 : st;pIF’HO [(U) =H] < ao} ) (3)

be the class of tests with a false alarm probability upper
bounded by «g. Here, Py;(A) stands for the probabil-
ity of event A under hypothesis H;,i = {0,1}, and the
supremum over @ has to be understood as whatever the
distribution parameters might be, in order to ensure that
the false alarm probability «g cannot be exceeded. Among
all the tests in Ky, it is aimed at finding a test § which
maximises the power function, defined by the correct
detection probability:

Bs = Py, [8(U) = H4], (4)

which is equivalent to minimise the missed detection
probability a1 (8) = Py, [8(U) = Ho]l =1 — Bs.

In order to design a practical optimal detector, as
referred in [11], for steganalysis in the spatial domain, the
main difficulty is to estimate the distribution parameters
(expectation and variance of each pixel). On the oppo-
site, in the case of the DCT coefficients, the application
of hypothesis testing theory to design an optimal detector
has previously been attempted with the assumption that
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the distribution parameter remains the same for all the
coefficients from a same subband. With this assumption,
the estimation of the distribution parameters is not an
issue because thousands of DCT coefficients are available.
However, which distribution model to choose remains an
open problem.

The hypothesis testing theory has been applied for the
steganalysis of JSteg algorithm in [22] using a Laplacian
distribution model and using the assumption that DCT
coefficients of each subband are i.i. d. However, this pio-
neer work does not allow the designing of an efficient
test because a very important loss of performance has
been observed when comparing results on real images
and theoretically established ones. Such a result can be
explained by the two following reasons: 1) the Laplacian
model might be not accurate enough to detect steganag-
raphy and 2) the assumption that the DCT coefficients
of each frequency subband are i.i.d. may be wrong.
Recently, it has been shown that the use of the generalised
gamma model or an even more accurate model [36,37]
allows the designing of a test with very good detection per-
formance. On the opposite, in this paper, it is proposed to
challenge the assumption that all the DCT coefficients of
a subband are i. i.d.

A typical example is given by Figures 2 and 3. Figure 2a
and Figure 2b, respectively, represent the DCT coeffi-
cients of the subband (1,2) and subband (4,4) extracted
from the image lena. Observing those two graphs, it is
obvious that the assumption of all those coefficients being
i.i.d. is doubtful. However, if it is assumed that each
coefficient has a different expectation, one can estimate
this expected value and compute the ‘residual noise’, that
is, the difference between the observation and the com-
puted expectation. Such results are shown in Figure 3,
with three different models for estimating the expectation
of DCT coefficients of the same two subbands from lena.
Moreover, Figure 4 illustrates the distribution of residual
noises which are plotted in Figure 3. Obviously, resid-
ual noises look much more i.i.d. than the original DCT
coefficients.

In the following section, we detail the statistical test that
takes into account both the expectation and the variance
as nuisance parameters, and we study the optimal detec-
tion when those parameters are known. A discussion on
nuisance parameters is also provided in Section 4.

3 LRT for two simple hypothesis

3.1 Optimal detection framework

When the payload R and the distribution parameters
0 = {6k}, k € {1,...,K},l € {2,...,64} are known,
problem (2) is reduced to a statistical test between two
simple hypotheses. In such a case, the Neyman-Pearson
Lemma ([35], theorem 3.2.1) states that the most pow-
erful test in the class ICy, (3) is the LRT defined, on
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Figure 2 lllustrative examples of the value of DCT coefficients of
two subbands (a, b) from the lena image. Those examples show

that the assumption that DCT coefficients are i.i.d. within a subband
hardly holds true in practice.

the assumption that DCT coefficients are independent,
as:

K 64

Hoif AMU) =D > Ay < ",
k=1 1=2
K 64

Hiif AT U) =YY A = T,

k=1 [=2

sty = (5)

where the decision threshold ! is the solution of the
equation Py, [AIr ) > tlr] = oy, to ensure that the false
alarm probability of the LRT equals «g, and the log likeli-
hood ratio (LR) for one observation is given, by definition,
by:

(6)

Alr(”k,l) = log (qgkl[ukl]> '

p@](,l [uk,l]

15
—— Wavelet residuals
10 —— BMB3D residuals
—— K-SVD residuals

-10
-15 ; ; ; y
0 1000 2000 3000 4000
(a) Subband (1,2)
10 T
—— Wavelet residuals
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5| ——K-SVD residuals

-10

0 1000 2000 3000

(b) Subband (4,4)

4000

Figure 3 lllustrative examples of DCT coefficients of residual
noise, obtained by denoising image. The same two DCT subbands
(a, b), as in Figure 2 are extracted the residual noise of lena image. On
those examples, the assumption of i.i.d. distribution seems to be
more realistic. It is noted that three denoising filters are respectively
designed based on wavelet, block-matching and 3D (BM3D) and
dictionary learning (K-SVD) algorithms.

In practice, when the rate R is not known, one can try to
design a test which is locally optimal around a given pay-
load rate, named Locally Asymptotically Uniformly Most
Powerful (LAUMP) test, as proposed in [6,8], but this lies
outside the scope of this paper.

From the definition of pyg, ,[u,] and qgkl[uk’l] (1), it is
easy to write the LR (6) as: ’

R R p@/(J [ﬁk,l] ) ) (7)

Alr(ukl)zlo 1——4+—
' & 2 2 Poy, [uk,l]

where, as previously defined, u;; = ug; + (—1)%k! repre-
sents the DCT coefficient uy; with flipped LSB.
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Figure 4 Statistical distribution of the DCT coefficients of the
residual noise plotted in Figure 3. For comparison, the Laplacian
pdf with parameters estimated by the maximum likelihood
estimation (ML est.) are also shown in (a). Note that for a meaningful
comparison, (b) shows the results after normalization by the
estimated scale parametergk. It is noted that three denoising filter are
respectively designed based on wavelet, block-matching and 3D
(BM3D) and dictionary learning (K-SVD) algorithms.

3.2 Statistical performance of LRT
Accepting, for a moment, that one is in this most
favourable scenario, in which all the parameters are per-
fectly known, we can deduce some interesting results. Due
to the fact that observations are considered to be indepen-
dent, the LR A"(U) is the sum of random variables and
some asymptotic theorems allow to establish its distribu-
tion when the number of coefficients becomes ‘sufficiently
large’. This asymptotic approach is usually verified in the
case of digital images due to the very large number of
pixels or DCT coefficients.

Let us denote Eq;,(0,;) and Vyy,(0k;) the expectation
and the variance, respectively, of the LR Alr(uk,l) under
hypothesis H;,i = {0,1}. Those quantity obviously
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depend on the parameterized distribution P, ,. The
Lindeberg’s central limit theorem (CLT) ([35], theorem
11.2.5) states that as K tends to infinity it holds true that®:

K 64
Do Al — By (610)
= T S NOD,i= (01,
K 64
(Z > Vi (9k,1)>
k=1 [=2

(8)

d . .. .
where — represents the convergence in distribution, and
N(0,1) is the standard normal distribution, i.e. with zero
mean and unit variance.

This theorem is of crucial interest to establish the sta-
tistical properties of the proposed test [7,22,37,38]. In
fact, once the moments have been calculated under both
‘H;, i = {0, 1}, one can normalise under hypothesis Hg the
LR A" (U) as follows:

A(U) = Y1 200 Ery (Bk)
(ZII<<=1 > Vitg (9k,1)) v
_ X 2 A ) — By Ord)

(Zfﬂ 222 Vi, (9k,1))1/2

Since this essentially consists of adding a deterministic
value and scaling the LR, this operation of normalisation
preserves the optimality of the LRT. It is thus straightfor-

ward to define the normalised LRT with Klr (U) by:

’

9)

Hoif AT(U) < T

—Ir
)= —r
Hif A(U) > T

(10)

It immediately follows from Lindeberg’s CLT (8) that

Xlr(U) asymptotically follows, as K tends to infinity, the
normal distribution A/ (0, 1). Hence, it is immediate to set
the decision threshold that guarantees the prescribed false
alarm probability:

=1 (1 -0, (11)

where ® and ®~!, respectively, represent the cumula-
tive distribution function (cdf) of the standard normal
distribution and its inverse. Similarly, denoting:

K 64 K 64
mi= Z ZE%‘ O 0] = Z ZVH,» (k1) »i=(0,1},
k=1 =2 k=1 =2

it is also straightforward to establish the detection func-
tion of the LRT given by:

O moy —m
ﬂglr =1-9o (Oq)_l 1 —wo) + 01) . (12)
o1 o1
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Equations (11) and (12) emphasise the main advantage
of normalising the LR as described in relation (9): it allows
setting any threshold that guarantees a false alarm prob-
ability independently from any distribution parameters,
and, this is particularly crucial because digital images are
heterogeneous, their properties vary for each image. Sec-
ond, the normalisation allows to easily establish the detec-
tion power which again is achieved for any distribution
parameters and hence for any inspected image.

3.3 Application with Laplacian distribution
In the case of Laplacian distribution, the framework of
hypothesis testing theory has been applied for the ste-
ganalysis of JSteg in [22] in which the moments of LR are
calculated under the two following assumptions: 1) all the
DCT coefficients from the same subband are i.i.d. and 2)
the expectation of each DCT coefficient is zero.

The continuous Laplacian distribution has the following
probability density function (pdf):

1 —
Sup@®) = 25 &XP <— i Y m)

where © € R, sometimes referred to as the location
parameter, corresponds to the expectation, and b > 0 is
the so-called scale parameter. During the compression of
JPEG images, the DCT coefficients are quantized. Hence,
let us define the discrete Laplacian distribution by the
following pmf, see details in Appendix A:

(13)

fuslkl Z P [x € [Ath —1/2), Atk + 1/2) []

exp<—'Akb%“') sinh(4) if % ¢ [ k—1/5k+1/2
1—exp(—%) cosh(— %) otherwise

(14)

where A is the quantization step.

From the expression of the discrete Laplacian distri-
bution (14) and from the expression of LR (7), one can
express the LR for the detection of JSteg under the
assumption that DCT coefficients follow a Laplacian dis-
tribution, as follows (see Appendix B):

R R A -
Aii,b[k]:log (1— §+§ exp |:bsign(Ak — )k — k):|> ,

(15)

where the observed DCT coefficient, referred to as uy
in Equation (7), is denoted as k. It can be noted that
this expression (15) of the LR is almost the same as
the one obtained in [22]; assuming that all DCT coeffi-
cients have a zero mean, only the sign term sign(Ak — )
becomes sign(k) when assuming a zero mean. It should
also be noted that the log-LR equals O for every DCT
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coefficient whose value is 0 or 1 because the JSteg algo-
rithm does not embed hidden data in those coefficients.
In the present paper, the moments of the LR (15) are
not analytically established; the interested reader can refer
to [22].

4 Proposed approach for estimating the nuisance
parameters in practice
4.1 Estimation of expectation of each DCT coefficient
As already explained, most statistical models of DCT coef-
ficients assume that within a subband the coefficients
are i.i.d. However, as illustrated in Figures 1 and 2, this
assumption is doubtful in practice. Another way to explain
why the DCT coefficients may not be i.i. d. is to consider
a block of 8 x 8 pixels in the spatial domain, say the first,
z = zj,i € {1,...,8},j € {1,...,8}. The value of those
pixels can be decomposed as:

Zij = Xij + Mijs

where x;; is a deterministic value that represents the
expectation of a pixel at location (i,j) and #;; is the
realisation of a random variable representing all noises
corrupting the inspected image. Clearly, this decomposi-
tion can be done for the whole block z = x + n, where
x = {x;;} and n = {n;;}. Since the DCT transformation is
linear, the DCT coefficient of any block may be expressed
as:

DCT(z) = D7zD = DT (x + n)D

=D'xD + D"nD = DCT(x) + DCT(n),
(16)

where DCT represents the DCT transform and D is the
change of basis matrix from spatial to DCT basis, often
referred as the DCT matrix.

It makes sense to assume that the expectation of the
noise component n has a zero mean in the spatial and in
the DCT domain. On the opposite, it is difficult to justify
that the DCT of pixels’ expectation x should necessar-
ily be around zero. Actually, this assumption holds true if
and only if the expectation is the same for of all the pix-
els from a block: Vi € {1,...,8},Vj € {1,...,8},x;; = %
see [36,37,39] for details.

On the opposite, in the paper, it is mainly aimed at
estimating the expectation of each DCT coefficient. To
this end, it is proposed to decompress a JPEG image V
into the spatial domain to obtain Z, then to estimate the
expectation of each pixel in the spatial domainz by using
a denoising filter. Then, this denoised image Z is trans-
formed back into the DCT domain to finally obtain the
estimated value of all DCT coefficients, denoted V =
{ij},i € {1,...,1},j € {1,...,]}. Several methods have
been tested to estimate the expectation of pixels in the
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spatial domain Z, namely, the BM3D collaborative fil-
tering [40], K-SVD sparse dictionary learning [41], non-
local weighted averaging method from non-local (NL)
means [42] and the wavelet denoising filter [43]. The
codes used for the methods [40-42] have been down-
loaded from the Image Processing On-Line websited. The
codes used for the method [43] have been downloaded
from DDES€.

4.2 Alocal estimation of b

In addition, the proposed model also assumes that the
scale parameter by is different for each DCT coefficient.
The estimation of this parameter, for each DCT coeffi-
cient, is based on the WS Jpeg method to locally estimate
the variance; that is, for coefficients v;;, it simply consists
of the sample variance of the DCT coefficients of the same
subband from neighbouring blocks:

(17)

1 1 1
~2 - \2
0jj = ; Z Z (Vi+8s,j+8t - Vi,j) ’

s=—1t=—-1
(5,)#(0,0)

where V;; is the sample mean: ézslzilzizill/l’_\.ss,ﬂ.gt. Let
(:0)#(0,0)
us recall that the MLE of the scale parameter of Lapla-

cian distribution from realisations x1,...,xy is given by
b=N"1 Z],Y:l |2, — w|. The local estimation of the scale
parameter it is proposed to use in this paper is given by:

.
bij= - Vit 8s,j+8t — Vit8sj+8¢
i =g j j

s=—1t=-1

(5,£)#(0,0)

, (18)

where ;yg;;18; is the estimation of expectation of each
DCT coefficient by using the denoising filter previously
defined. As in the WS Jpeg algorithm, this approach raises
the problem of scale parameter estimation for blocks
located on the sides of the image. In the present paper, as
in the WS Jpeg method, it is proposed not to use those
blocks in the test.

4.3 A channel selection to improve the method

Inspired by the channel selection algorithms (see [28,29]),
it is proposed to improve our detector with a weighting
factor (WF). In practice, WF is generated from the quan-
tized and rounded ‘residual noise’, which is calculated by
the following steps:

1. By uncompressing the JPEG format image, we obtain
the intensity value of a JPEG image in the spatial
domain.

2. By using a denoising filter, we extract the raw
‘residual noise’ in the spatial domain.
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3. By using DCT transformation, we transform the raw
‘residual noise’ from the spatial to the frequency
domain.

4. By using quantization table, we can obtain the
quantized ‘residual noise’.

5. By rounding the quantized ‘residual noise’ in the
frequency domain, the quantized and rounded
‘residual noise’ is obtained.

6. If a quantized and rounded ‘residual noise’ takes zero,
WE equals 0; If not, WF equals 1.

Thus, based on our proposed WE, it is proposed to cat-
egorise ‘residual noise’ set into two subsets: ‘non-zero’
subset and ‘zero’ subset. To verify the effectiveness of our
improved algorithm, it is proposed to randomly choose
ten exemplary images which are compressed to JPEG for-
mat images with quality factor 70 and embedding rate R =
0.05. Also, all the images of the BossBase database [27] are
used for computing the average value. Table 1 gives the
statistical ratio of the data in which the annotations of the
table are as follows:

e Cover channel selection ratio: denotes the ratio of the
‘non-zero’ subset to the ‘residual noise’ set of a cover
image.

e Stego channel selection ratio: denotes the ratio of the
‘non-zero’ subset to the ‘residual noise’ set of a stego
image.

e Cover DCT coefs. std: denotes the standard deviation
of the ‘residual noise’ set from a cover image.

e Stego DCT coefs. std: denotes the standard deviation
of the ‘residual noise’ set from a stego image.

e Cover JSteg selection ratio: denotes the ratio of the
DCT coefficients used by JSteg in the ‘non-zero’
subset to the DCT coefficients used by JSteg in the
‘residual noise’ set from a cover image.

e Stego JSteg selection ratio: denotes the ratio of the
DCT coefficients used by JSteg in the ‘non-zero’
subset to the DCT coefficients used by JSteg in the
‘residual noise’ set from a stego image.

e Cover and stego selection similarity: denotes the ratio
of the same position in the ‘non-zero’ subset before
and after embedding.

In our proposed statistical test, the number of the
selected coefficients for the detection should be kept very
close before and after embedding. As Table 1 illustrated,
the ratio of cover channel selection ratio and stego chan-
nel selection ratio basically remains the same before and
after embedding, which reveals the proportion of the
coefficients used for the test as nearly the same. Sim-
ilarly, the ratio of cover DCT coefs. std and stego DCT
coefs. std allows us to verify our assumption that the
embedding doesn’t change much the statistical proper-
ties of the ‘residual noise’. In addition, those numbers
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Table 1 Ratio (%) comparison before and after embedding
Inspected images index

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 On average
Cover channel selection ratio 0.23 0.17 0.56 0.61 0.21 0.03 0.87 041 1.23 033 0.63
Stego channel selection ratio 023 0.17 0.56 0.62 0.21 0.04 0.88 042 1.22 0.34 0.64
Cover DCT coefs. std 098 1.01 1.06 1.03 0.90 1.07 1.02 0.93 1.26 1.03 745
Stego DCT coefs. std 0.98 1.00 1.06 1.03 0.89 1.07 1.03 0.90 1.27 1.03 752
Cover JSteg selection ratio 1.12 0.81 246 249 0.80 0.08 5.07 242 7.56 0.34 144
Stego JSteg selection ratio 448 2.85 7.63 7.60 2.27 1.07 17.1 792 20.5 1.04 4.95
Cover and stego selection similarity 89.5 91.5 94.2 930 80.7 80.7 939 937 933 939 928

also show that, after rejection of the content, the ‘resid-
ual noise’ standard deviation is very small compared to
the original DCT coefficients (see also Figures 2 and 3),
which thus permits a better detection of modifications
due to JSteg embedding. The ratio of cover and stego
selection similarity which is kept at the high value sig-
nifies that most of the ‘residual noise’ are chosen at the
same position. Then, the only difference is the compar-
ison between the cover JSteg selection ratio and stego
JSteg selection ratio. It should be noted that if all DCT
coefficients used by JSteg are included in the ‘non-zero’
subset, then the ratio equals 100%. It is observed that
only a few of the DCT coefficients used by the JSteg
algorithm is included in the ‘non-zero’ subset. Neverthe-
less, after embedding, the ratio of stego JSteg selection
ratio is largely improved, compared with the ratio of cover
JSteg selection ratio. It can be assumed that by using a
WE, more ‘residual noise’ from the embedding positions
are counted. Besides, prior to embedding secret informa-
tion, we never know which position will be embedded;
the very low ratio of the cover JSteg selection ratio is
reasonable.

By investigating the ‘non-zero’ and ‘zero’ subset,
although we can not capture all the embedding positions
in the DCT domain, it is totally enough to detect the JSteg
steganography. Besides, all the coefficients in the ‘zero’
subset are not counted in our proposed test. On average,
for a cover image with the size of 512 x 512, 0.63% of
the coefficients are kept to compute the test; 0.64% of the
coefficients from a stego image are used. As the embed-
ding rate R = 0.05, it is obvious that most of the DCT
coefficients remain the same before and after embedding.
Thus, it is not necessary to compute these values. Fur-
thermore, the LR values of these DCT coefficients without
embedding any information probably mask or disturb the
LR from DCT coefficients with JSteg embedding.

4.4 Design of proposed test
In Section 3, the framework of hypothesis testing theory
has been presented assuming that distribution parameters

are known for each DCT coefficient. To design a practical
test, a usual solution consists of replacing the unknown
parameter by its ML estimation. This leads to the con-
struction of a generalised LRT. A similar construction is
adopted in this paper, using the ad hoc estimators pre-
sented at the beginning of Section 4, instead of using the
ML method to estimate the distribution parameters of
each DCT coefficient. The proposed test is thus defined
as:

K 64

Hoif A(U) =Y > Aesir) < 7,
k=1 [=2
K 64

HUifAU) =) > Aol > T,

k=1 1=2

3(U) (19)

where the channel-selection decision statistic Kcs(uk,l) =
K(uk,l) - wy, for a single DCT coefficient is given, and
a weighting factor wy; selects the DCT channel. Next,
let us study the K(uk,l) to verify the effectiveness of our
proposed test.

To verify our improvement based on the Laplacian test
(see [22]), it is proposed to consider the weighing fac-
tor wg; as a constant equal to 1. The scale parameter b
is estimated by using MLE and the location parameter is
ignored (see details in [22]). The LR is given by:

-~ A -
A(ug) = log (1 + g + g exp [Zsign(Ak)(k - k)]).

(20)
The first improvement of the previous LR is the con-

sideration of the location parameter fiy ; (see Section 4.1).
The new LR is designed by:

— R R A ~ -
A1 (uky) :10g(1+ 3 + 2exp|:,b\sign(Ak—uk,l)(k - k)}).
(21)
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The second improvement is the estimation of the scale
parameter by, (see Section 4.2) and ignore the location
parameter. The LR is designed by:

— R R A -
Ao (upy) =log| 1+ = + — exp|=—sign(Ak)(k — k)| |
22 129

(22)

The third improvement is to give the assumption that
DCT coefficients are i.i.d. The scale parameter b;; and
the location parameter fiy; of the distribution are esti-
mated separately by using our proposed algorithms in
Sections 4.1 and 4.2.

— R R A —~ -
Asz(upy) =log|14+—+ —exp| =—sign(Ak—1ix ) (k—k)| |.
22 br,i

(23)

Moreover, it is proposed to explore the effectiveness of
introducing a weighing factor wy ; which is defined as:

0 if Ak—Ti € (—0.5,0.5)
Wi = . (24)
1 otherwise.
The last LR is obtained by multiplying (23) by wy; :
Res(uug) = N )W (25)

It is should be noted that (20) is the algorithm from [22].
In Section 5, the specific comparison of the detectors is
presented. In order to have a normalised decision statistic
for the whole image, K(U) is defined as:

K 64

~ 1 ~ -
AU = 303 Restune) — Eny (e B
k=1 [=2
K 64 . (26)
with 87 = > 3" Vagy (ks brr)
k=1 [=2

4.5 Comparison with prior art

The WS Jpeg, as well as the WS for spatial domain, is
based on the underlying assumption that the observations
follow a Gaussian distribution. As recently shown [6,8],
the WS implicitly assumes that the quantization step is
negligible. Let us rewrite the LR test for JSteg detection
based on a Gaussian distribution model of DCT coeffi-
cients. Let X be a random variable following a quantized
Gaussian distribution. Exploiting the assumption that the
quantization step is negligible compared to noise standard
deviation allows the writing of:

/A(k+1/2) 1 ( (x _ M)2> 4
exp|————=—) dx
Atk—1/2) O~21 202

A ( (Ak—u)z)
exp| ————).

o2 202

P[X = ]

&

27)
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Putting this expression of the pmf under hypothesis
Ho into the LR (2), and assuming that the quantization
step is negligible compared to the noise standard devia-
tion, A << o, it is immediate to obtain the following
expression of the LR under the assumption of Gaussian
distribution of DCT coefficient:

(Ak—p)?
R exp (— 252 )

log|14+ -4+ -—7——=
k—10)2
2 2exp (—(Azgz") )
RA _ (28)
~ e} k—k) (Ak—p)
=" w, +1 (Ak— )

see details in Appendix C. This expression highlights the
well-known fact that the WS consists in fact of three
terms: 1) the term w, which is a weight so that pixels or
DCT coefficients with the highest variance have a small-
est importance, 2) the term (k — k) = +1 according the
LSB of k and 3) the term (Ak — ).

In comparison, the expression of the LR for a Laplacian
distribution model (15), as well as the expression of the
proposed test with estimates (21) can be approximated by
(see details in Appendix B):

RA - —_——
o (k=R sign(Ak— 1) = Wy £l

—
5 sign(Ak — )

(29)

which is also made of three terms; the two first are roughly
similar to the two first terms of the WS : 1) the term wy, is
a weight so that DCT coefficients with the highest ‘scale’
b have the smallest importance; note that the variance is
proportional to b%; 2) the term (k — k) ==+1 according to
the LSB of k. However, in the expression of the LR based
on the Laplacian model, the term (Ak — ) of the WS is
replaced with its sign. This shows that the statistical tests
based on the Laplacian model and based on the Gaussian
model are essentially similar.

5 Numerical simulations

5.1 Results on simulated images

One of the main contributions of this paper is to show that
the hypothesis testing theory can be applied in practice to
design a statistical test with known statistical properties
for JSteg steganalysis.

To verify the sharpness of the theoretically established
results, we generate 1,000 sets of 4,000 random variables
(a Monte Carlo simulation) following the Laplacian dis-
tribution, where R = 0.05, 4 = 0 and b distributed
from 1 to 10 with a step of 0.5. Then, the expectation
and variance values are calculated empirically and theo-
retically. As shown in Figure 5, the empirically calculated
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Figure 5 Expectation mg and variance og as a function of the
scale parameter b theoretically and empirically.

moments are almost equal to the analytically established
ones.
Subsequently, to verify the effectiveness of the estab-

lished LRT Slr(U), again, a Monte Carlo simulation is
performed by repeating 10,000 times using a vector 64 x
4,096 following the Laplacian distribution, in which the
scale parameter is selected arbitrarily as 3 and the location
parameter 0. Under the hypothesis Ho and #;, respec-
tively, Figure 6 presents the comparison between empir-

ical and theoretical distribution of Klr(U). The results
highlight the validity of the proposed test (10).

Figure 7 gives the comparison between the empirical
and theoretical FAR «y, respectively, of the test (10). This
particularly demonstrates that two curves are very close.
Figure 8 offers the receiver operating characteristic (ROC)
comparison, that is the detection power .. as a function
of FAR «g, of both empirical and theoretical established
results in (11) and (12).

0.5

Theoretical A (U) under Ho

Theoretical A" (U) under H,

= = = Emperical A" (U) under Ho
= = = Emperical A" (U) under H,
il i 2 a

Figure 6 Comparison between empirical and theoretical
—I
distribution of A" (U).
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Figure 7 FAR a as a function of the threshold 7".

5.2 Results on real images

Another contribution of this paper is to design the optimal
test with estimated parameters to break JSteg algorithm in
a practical case.

First, let us investigate our proposed detectors (21) to
(23). It is proposed to perform a numerical simulation
over the 1,000 images from BossBase [27] which have
been compressed in JPEG with quality factor 70. The
payload, or embedding rate, R is set at 0.05 for JSteg algo-
rithm. For a fair comparison with the detector from [22],
it first shows the improvement provided by the proposed
model with wy; = 1. As Figure 9a illustrates, all the pro-
posed detectors outperform K(uk,l) (20) proposed by [22].
Moreover, in the following investigation, it is proposed to
use Kcs(uk,l) (25). Then, it is proposed to give the per-
formance of this detector on 1,000 simulated images in
which a DCT subband is generated by strictly following
the Laplacian distribution (see Figure 9b). Then, a com-
parison with simulations of the LR test shows the loss
of power due to the estimation of expectation and scale

P - - -=Emperical ROC
0% ] Theoretical ROC

0.4-

0.2F

00 0.2 0.4 0.6 08 a 1

Figure 8 Detection power ﬂﬁ" as a function of FAR &g (ROC

curve). ROC, receiver operating characteristic.
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(b) Comparison of detection performance with channel se-
lection (weighting factor wy,; from (24)).

Figure 9 ROC curves comparison, detection power as a function
of FAR ag. (@) Comparison of detection performance without
channel selection (constant weighting factor wy = 1). (b)
Comparison of detection performance with channel selection

(weighting factor wy from (24)). LRT, likelihood ratio test.

parameters. It should be noted that in all our proposed
detectors in this paper, X(uk,l) (23) with wy; (24) per-
forms best. Thus, it is proposed to use it as our optimal
steganalyser for competing with the state-of-the-art JSteg
detectors. It is should be emphasised that in Figure 9,
the wavelet denoising filter [43] is used for estimating the
location parameter iy ; (see Section 4.1).

To verify the relevance of the proposed methodology, it
is proposed to compare the proposed statistical test with
two other detectors. The first chosen competitor is the
statistical test proposed in [22] as it is also based on a
Laplacian model but does not take into account the dis-
tribution parameters as nuisance parameters; it considers
that DCT coefficients are i.i.d., following a Laplacian
distribution with zero mean. The comparison with this
test is meaningful as it allows us to measure how much
the detection performance is improved by removing the
assumption that the DCT coefficients of each subband are
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i.i.d. The second chosen competitor is the WS [15] due to
its similarity with the proposed statistical test, see details
in Section 4.5.

For a large-scale verification, it is proposed to use the
‘break our steganographic system’ (BOSS) database, made
of 10,000 grayscale images of size 512 x 512 pixels, used
with payload R = 0.05. Prior to our experiments, the
images have been compressed in JPEG using the linux
command convert which uses the standard quantization
table. Note also that all the JSteg steganography was per-
formed using a Matlab source code we developed based
on Phil Sallee’s Jpeg Toolboxf. Four denoising methods
have been tested to estimate the expectation of each DCT
coefficient, namely the K-SVD, the BM3D, the NL means
and the wavelet denoising algorithms.

Figure 10 shows the detection performances obtained
over the BOSS database compressed with quality fac-
tor 70. The detection performances are shown as ROC
curves, that is the detection power is plotted as a function
of false alarm probability. Figure 10a particularly empha-
sises that the statistical test based on the Laplacian model
does not perform well while the proposed methodology
which takes into account that the Laplacian distribution
parameters as nuisance parameters allows us to largely
improve the performance. Similarly, the WS detector
achieves overall good detection performance. However,
it can be shown in Figure 10b, which presents the same
results using a logarithmic scale, that for low false alarm
probabilities, the performance of the WS significantly
decreases. On the opposite, the proposed statistical test
still performs well.

Among the four denoising algorithms that have been
tested, the BM3D achieves the best performance, but
it can be observed in Figure 10 that the performances
obtained using the K-SVD and using the wavelet denois-
ing methods are also very good. The performance of NL
means method is comparable with the WS detector [15].

To extend the results previously presented, a similar
test has been performed over the BOSS database using
the quality factor 85. The detection performance obtained
by the proposed test and by the competitors are pre-
sented in Figure 11. Again, this figure shows that based
on the Laplacian model, the statistical test assuming that
DCT coefficients of a subband are i.i.d. has an unsat-
isfactory performance. It can also be noted that even
though the WS performs slightly better for low false alarm
probability, compared to the results obtained with qual-
ity factor 70, it performs much worse than the proposed
statistical test.

6 Conclusions

This paper aims at improving the optimal detection of
data hidden within the DCT coefficients of JPEG images.
Its main originality is that the usual Laplacian model
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Figure 10 Comparison of detection performance for BOSS
database with quality factor 70. (a) Comparison of detection
performance for BOSS database with quality factor 70 (linear scale).
(b) Comparison of detection performance for BOSS database with
quality factor 70 (logarithmic scale). WS, weighted stego-image. It is
noted that denoising filters are respectively designed based on
wavelet, block-matching and 3D (BM3D), dictionary learning (K-SVD)
and non-local (NL) means algorithms.

is used as a statistical model of DCT coefficients, but
opposed to what is usually proposed, it is not assumed
that all DCT coefficients from a subband are i.i.d. This
leads us to consider the Laplacian distribution parame-
ters, namely the expectation e and the scale parameter b,
as nuisance parameters as they have no interest for the
detection of hidden data, but they must be carefully taken
into account to design an efficient statistical test. Numeri-
cal results show that by estimating those nuisance param-
eters, the Laplacian model allows the designing of an
accurate statistical test which outperforms the WS detec-
tor. The comparison with the optimal detector based on
the Laplacian model and on the assumption that all DCT

o Laplacian test [22]
WS detector [15]

. A with NL means
107F by BEEIHEE — A with Wavelet
SiEEE A with K-SVD

_4 — A with BM3D

10 ‘ ‘
107 107° 107 10" a 10°
Figure 11 Comparison of detection performance for BOSS
database with quality factor 85 (logarithmic scale). It is noted that

denoising filters are respectively designed based on wavelet,
block-matching and 3D (BM3D), dictionary learning (K-SVD) and

non-local (NL) means algorithms.

coefficients of a subband are i.i. d. shows the relevance of
the proposed approach.

A possible future work would be to apply this approach
with a state-of-the-art statistical model of DCT coeffi-
cients, such as the generalized Gaussian or the gener-
alized gamma model. This could provide improvements
in the detection performance at the cost of a higher
complexity.

Endnotes

2In this paper, we assume, without loss of generality,
that both width and height of the inspected image are
multiples of 8.

bIn practice, DCT coefficients belong to set
[—1024,...,1023], see [22].

“Note that we refer to the Lindeberg’s CLT, whose
conditions are easily verified in our case, because the
random variable are independent but are not i.i.d..

dImage Processing On-Line journal is available at:
http://www.ipol.im

¢Source codes are available at: http://dde.binghamton.
edu

fPhil Sallee’s Jpeg Toolbox is available at: http://dde.
binghamton.edu/download/jpeg_toolbox.zip

Appendix

A Quantized Laplacian pmf

Let X be a Laplacian random variable with expectation u
and variance b. Its pdf is thus (see (13)):

_ 1 = p
Jup(®) = % exp( 5 ) )
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and a straightforward calculation shows that its cdf is
given by:

1 1 _
Fu,b(x) = 5 + Esign(x ) (1 — exp (_ |x ; /’L|)> ’
(30)

(31)

Now consider the result from quantization of this ran-
dom variable Y = | X/A], it is immediate to establish the
pmf of this random variable. Let us first consider the case
A(k 4+ 1/2) < p (due to the symmetry of Laplacian pdf,
the case A(k — 1/2) > pu is treated similarly).

The pmf of Y is given by:

P[Y = k] =P[A(k —1/2) < X < A(k + 1/2)],
1 <A(k+ 1/2) — ,u)
Sexp( ——

2 b

1 <A(k—l/2)—u>
— —exp Tﬂ ,

1 Ak —p A
zexp b exp 219
1 Ak —n —A
2 P\ T )P o )
Ak — )\ . h A
= ex inh|{ — |,
P\ T )M g

Applying similar calculations for case A(k — 1/2) > p,
one gets:

o [Ak —pulY | A
IP’[Y_k]_exp( b) smh<2b>,

which corresponds to the pmf given in Equation (14). The
case A(k —1/2) < p < A(k + 1/2) is treated similarly.

(32)

C Log-likelihood ratio calculation
By putting the expression of quantized Laplacian pmf (32)
into the expression of the LR (7), it is immediate to write:

R
Ay =log|1-=+=

R €XP (— 7|N_<b—ﬂ\> sinh (%)
2 2 exp (—Lkh_“‘) sinh (%)
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Let us study the term:

exp <—MT_M) sinh(z%) exp (_\Ai—m)
exp <7W<%) sinh(%) - exp <7L;”‘)’

exp (— 2421
exp (_ \Akl:m> exp (Asign(Akb—M)(k_/}))
exp (— 2421 ’
_exp (Asign(Ak - 1)k — /})) ‘
(33)

From this Equation (33), it is immediate to establish the
expression (15):

R R Asign(Ak — 1) (k — k
log<1—2+2exp( sign b'u)( )>)

By using a Taylor expansion, A (u ;) can be approxi-
mated by:

R R Asign(Ak — p)(k — k)

~ log (1 N (RAsign(Al;; w (k — k))) ,

RA -
~ E(k — k)sign(Ak — p).

B LR based on the Gaussian model (WS)

Let X be a Gaussian random variable with expectation p
and variance o2. Define the quantized Gaussian random
variable as follows: Y = | X/A]; its pmfis given by P, , =
{pu,o (k] }lti—oo with:

Puoclk]l =P[Y = k]
/A(k+1/2) 1 ( (x_ M)2)d
= ex —_—— X.
A(k=1/2) O~2m P 202

Assuming that the quantization step A is ‘small enough’
compared to the variance A << o, it holds true that

[6,44]:
A (Ak — p)?
Puolkl~ o2 exp <—202> ) (34)
and

- 2
Puo (k] +Puo [k]~ >
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Let us rewrite the LR for the detection of JSteg (7) as
follows

R  Rpuolk]
Ar —log(1-2 4 ZPralBl)
(ui,;) = log 5+ 2 P[]
R k k
= log 1—R+7M (36)
2 Pu,o[k]

Using the expressions (34) and (35) let us study the follow-
ing ratio:

Aty
- exp| — g
P (K] +p,00 K]

Puolk] exp (_%)
_ 2
(A/HHA /Z(k—k))
exp — 720_2
=2 ,
— )2
exp (— L;{L) )
k—w)? k—p) (k—k 2
exp(— (AZGf) )exp(A(A 252)( ))exp(— 8@—2)
=2 (Ak—p)? ’
exp oot
) A(Ak — ) (k = k) A2
=2exp| ———————— |exp|—— ).
P 202 P 802

(37)

Putting the expression (37) into the expression of the
log-LR (36) immediately gives:

A(Ak — p)(k — k)

Alr(uk,l) =log|1+R|exp 5
20

A2
X exp <_802> -1

from which is a Taylor expansion around A /o = 0, this
results from the assumption that A << o, and finally
gives the well-known expression of the WS:

RA -
A Gup) 5 (k= ke) (ak = (39)
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