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Abstract

This paper proposes a novel method for fully automatic anomaly detection on objects inspected using an imaging system. In
order to address the inspection of a wide range of objects and to allow the detection of any anomaly, an original adaptive linear
parametric model is proposed; The great flexibility of this adaptive model offers highest accuracy for a wide range of complex
surfaces while preserving detection of small defects. In addition, because the proposed original model remains linear it allows
the application of the hypothesis testing theory to design a test whose statistical performances are analytically known. Another
important novelty of this paper is that it takes into account the specific heteroscedastic noise of imaging systems. Indeed, in such
systems, the noise level depends on the pixels’ intensity which should be carefully taken into account for providing the proposed test
with statistical properties. The proposed detection method is then applied for wheels surface inspection using an imaging system.
Due to the nature of the wheels, the different elements are analyzed separately. Numerical results on a large set of real images show
both the accuracy of the proposed adaptive model and the sharpness of the ensuing statistical test.
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1. Introduction

During the past decades, automated visual inspection (AVI)
systems have been broadly used for the inspection of a wide
range of “objects” such as fabrics [1, 2, 3], nuclear fuel rods [4],
steel [5, 6, 7, 8] or even food [9] to cite few examples. The main
role of a computer-vision system is to provide detailed descrip-
tion of the inspected product, from one or several images, in
order to detect and classify the possible occurrence of any type
of anomaly. Given a set of product specifications, any obser-
vation that deviates more than a prescribed value from what is
standard, or normal, is considered as an anomaly. Furthermore,
if the anomaly surpasses certain acceptance limits, which are
usually defined by the customer, it is then referred to as a de-
fect.
In general, the anomaly detection process is a –fully or
partially– manual process conducted by operators, whose main
role is to inspect each and every product manufactured along
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the fabrication line. A single operator might have to inspect
thousands of manufactured products during the day. As a re-
sult, this manual process is usually subjective, labor intensive,
and sometimes biased. Therefore, and in order to overcome
these difficulties, there is a great need for fully automatic sys-
tems that are fast and sufficiently efficient, and which are used
to replace, or to assist, the operators to control the presence of
defects [10]. Such systems have to be reliable, and trustworthy,
for the detection of various types of defects. However, depend-
ing on inspected objects geometry and their internal structure,
the detection may be made difficult due to the non-anomalous
“background”.

1.1. State of the Art

Prior methods for surface anomaly detection based upon im-
ages captured with an AVI system can be divided into three
categories [1, 4, 11]: 1) Generic methods that are highly flexi-
ble as they are not based on any prior knowledge on inspected
objects [5], 2) Specific methods that are based on ground truth
or examples of a reference [11], and 3) Methods based on com-
puter vision and image processing, see [12, Chap. 15] , that
usually require prior information on the non-anomalous object.

The first category includes anomaly detection methods that
do not require any prior model of object’s structure. Differ-
ent types of filters [3, 6], such as median filter or Gaussian
filter, morphological operations [13], and histogram equaliza-
tion [14], have been all applied for noise reduction, image en-
hancement, with the aim to improve the contrast between the
anomaly and the non-anomalous background. These tools, fol-
lowed by pattern recognition methods [15, 16] or thresholding
operations [7, 8], illustrate the core architecture of this type
of methods. First-order gradient filter followed by threshold-
ing is one of the most commonly used approach in this cate-
gory [6, 8, 17]. More recently, state-of-the-art image processing
methods, such as multi-resolution representation [18], sparse
dictionary learning [19] and variational methods [20], have all
been applied for automatic anomaly detection. Similarly, clas-
sification methods have been used for automatic recognition of
anomalies, mainly with the help of supervised machine learn-
ing [7, 8, 21, 22, 24]. These methods consist of separating
the inspected image into regions of distinct statistical behav-
ior [23], based on the assumption that common properties can
define all kinds of anomalies and distinguish them from any
non-anomalous background. The existence of such properties
is doubtful in practice and these methods are thus often sensi-
tive to the object and anomaly geometry and to the presence of
noise.

In the second category, the detection methods are based on
a ground truth: a reference image of the non-anomalous back-
ground used as a model [11, 25]. The detection is thus straight-
forward as it is usually based on mere differences between
the reference and the inspected image. If a significant differ-
ence is identified, the inspected image is classified as defec-
tive [14, 26]. Usually, the reference image is created by av-
eraging multiple anomaly-free images [27]. In an alternative
approach, the reference image is estimated from the inspected

image using a filter consisting of several masks [28]. This ap-
proach is efficient but is very sensitive to experimental condi-
tions, such as object position, illumination and projection an-
gles. Moreover an accurate ground truth may be difficult to
obtain in practice.

Finally, methods from the third category make use of prior
statistical information on the non-anomalous object. Two main
approaches have been proposed to introduce statistical prior
knowledge: Bayesian and non-Bayesian approaches. The
Bayesian statistical approach allows the design of efficient and
rather simple methods for anomaly detection. However those
methods require 1) that the anomaly occurs with known prior
probability and, 2) that the non-anomalous object is also ran-
dom with known a priori distribution. Those requirements limit
the application of Bayesian methods.
For a more detailed review on methods for automatic defects
detection, the reader is referred to [11, 5, 29, 30].

In the anomaly detection problem considered in the present
paper, the non-anomalous background of the inspected surface
has no interest in the detection process while it may hide the
anomalies and, hence, may prevent their detection. In addi-
tion, we do not always have prior distributions to model both
the inspected surface and the occurrence of anomalies. In such
situations, it is more convenient to represent the expected non-
anomalous background as a linear combination of basis func-
tions, and to consider non-Bayesian hypothesis testing methods
for anomaly detection.
As a result, the method proposed in present paper belongs to the
third category, and, specifically, to non-Bayesian approaches. It
is based on some knowledge on the inspected surface and uses
it to design a broad method for rejecting the non-anomalous
part of this inspected surface. This allows to meet the practical
constraints of the industrial process, such as speed and reliabil-
ity, while using geometric knowledge on the inspected object
which is easily available at the manufacturing stage.

1.2. Contribution of This Work
In this paper, it is proposed to design a non-Bayesian method

based on an adaptive model of the non-anomalous part of the
inspected surface, also referred to as the “background”. This
original adaptive model is interesting as it allows the inspection
of a large range of surfaces, with different geometries, without
prior information or Computer-Aided Design (CAD) models of
the inspected object; this extends the application of the pro-
posed methodology to various quality inspection domains. In
addition, the use of this model with an heteroscedastic statisti-
cal noise model of digital images prevents the need to calibrate
the imaging system. Eventually, the proposed model is accurate
enough to allow the detection of small defects that are hardly
visible by naked eyes. The proposed method is then applied for
wheels surface inspection to detect “appearance defects” that
are located on the surface of the wheel. This specific applica-
tion allows challenging the efficiency of the proposed method-
ology in several ways; indeed the surface of the wheel is rather
complex to inspect and requires an accurate model, while as in
most of industrial applications, the large number of wheels pro-
duced every day requires mastering precisely the properties of
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the statistical test.
Our prior works [31, 32] also rely on a similar approach for hid-
den data detection; fundamental differences, however, are that
in this paper no information of the potential anomaly (shape,
size, position, etc.) is available and that the adaptive model is
much more accurate which allows its use in a much wider range
of applications.
The main contributions of the present paper are the following:

1. An adaptive statistical model is proposed to represent the
imaged surface. This model only requires knowledge of
inspected objects geometry making, thus, the anomaly de-
tection system fully automatic and applicable to a wide
range of surfaces.

2. The proposed model is accurate, to ensure high detection
performance, and computationally simple, for real-time
applications.

3. The heteroscedastic noise model is used to accurately de-
scribe the noise properties in raw images. Accordingly, for
other types of images, the heteroscedastic model can be
replaced with the appropriate model without having any
effect on the detection accuracy.

4. The statistical properties of the method are explicitly pro-
vided. The detection threshold only depends on the false-
alarm probability. Consequently, an operator can, for in-
stance, prescribe a false-alarm probability easily and can
know which type of anomalies can be detected with which
probability.

Numerical results on extended data sets of wheel images from
a wide range of wheel types show the relevance of the proposed
adaptive statistical model and the sharpness of theoretical es-
tablished results.

1.3. Organization of This Paper
The present paper is organized as follows. Section 2 states

the problem of anomaly detection. Section 3 details the pro-
posed adaptive model of the inspected surface. This model is
both simple, for a real-time application, and linear for a sim-
ple use within hypothesis testing theory. Section 4 presents the
proposed statistical method for anomaly detection. It also es-
tablishes the statistical properties of the statistical test. Then,
section 5 describes the different elements of the wheel and the
approach used for their detection and localization, and presents
the preparation of the wheel surface for inspection. Finally,
Section 6 presents numerical results and Section 7 concludes
the paper.

2. Problem Formulation

Let Z = {zm,n} denote the noisy image, of the inspected
surface, of size M × N, where (m, n) ∈ Z = ({1, . . . ,M} ×
{1, . . . ,N}). During acquisition, each pixel is corrupted with
various noises that change its value from the one expected upon
counted photons on the camera sensor. Therefore, each pixel
value zm,n at location (m, n) can be represented as:

zm,n = µm,n + ξm,n (1)

where µm,n is the expectation of pixel zm,n, or the noise-free
value, and ξm,n represents the noises corrupting the pixel at this
location. It is usually assumed that all the noises corrupting the
pixel value can be modeled as a Gaussian random variable [40].
A a consequence, the statistical distribution of value for the
pixel at location (m, n) is given by:

zm,n ∼ N
(
µm,n, σ

2
m,n

)
(2)

where σ2
m,n is the noise variance. This representation of a

pixel is considered when no anomaly is present in the inspected
surface. On the contrary, when an anomaly is present in the
inspected surface, the expected value of the pixel is affected.
Hence, zm,n can be written as:

zm,n = µm,n + θm,n + ξm,n (3)

where θm,n is the impact of the anomaly on pixel’s expectation.
In fact, the anomaly affects a limited area of the image, there-
fore θm,n is equal to zero except for a few pixels in which the
anomaly is located. Then, when an anomaly is present, the
model of the pixel at location (m, n) becomes:

zm,n ∼ N
(
µm,n + θm,n, σ

2
m,n

)
(4)

When inspecting an image of a surface with the goal of de-
tecting an anomaly, two situations may occurH0 = {there is no
anomaly} andH1 = {there is an anomaly}.
From equations (2) and (4), anomaly detection problem can be
represented as a decision between the two following hypothe-
ses:H0 :

{
zm,n ∼ N(µm,n, σ

2
m,n) , ∀(m, n) ∈ Z

}
H1 :

{
zm,n ∼ N(µm,n + θm,n, σ

2
m,n) , ∀(m, n) ∈ Z

}
,

(5)

with θm,n , 0 for some (m, n).
Formally, a statistical test δ is a mapping δ : RM.N 7→ {H0;H1}.
When testing two hypotheses, the ultimate goal is to design a
Uniformly Most Powerful (UMP) test, which maximizes the
power function and satisfies a prescribed constraint on false-
alarm probability regardless the anomaly. Let us denote PHi the
probability under hypothesisHi with i = {1, 2}. The false alarm
probability of a test is defined as:

α0(δ) = PH0 (δ(Z) = H1)

Conversely, the power of a test δ is defined as:

β(δ) = PH1 (δ(Z) = H1),

which also corresponds to 1 − α1(δ) where α1(δ) is the missed-
detection probability.

However, resolving such a problem is not straightforward
due to various difficulties. In practice, the main difficulty is
the presence of unknown nuisance parameters, in the definition
of hypotheses, that have no interest for the anomaly detection
problem. These nuisance parameters are the pixels’ expecta-
tion µm,n that describe the background, or the non-anomalous
part of the inspected surface. Though this nuisance parameter
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is not related to the detection problem, it must be carefully taken
into account, through the design of a model that accurately de-
scribes this background, such that the nuisance parameter does
not prevent the detection of anomalies. The model has to be de-
signed with the highest accuracy for distinguishing anomalies
from background and, hence, to enhance the detection of the
former. However, due to the diversity of inspected surfaces in
various applications, this becomes a complex task.
In addition, imaging devices are characterized by an het-
eroscedastic noise model that makes pixels’ variance σ2

m,n a
function of expectations µm,n. This property greatly complexi-
fies the removal of the nuisance parameter as well as the design
of the ensuing optimal statistical test.
Another difficulty resides in the fact that in this paper, it is con-
sidered that no information of the potential anomaly (shape,
size, position, etc.) is available. In general, this is the case
for many applications. Consequently, as the anomaly cannot
be modeled, it is necessary for the background model to be ac-
curate enough to describe the non-anomalous part of the in-
spected surface, while at the same time avoid the subtraction of
the anomaly.

3. Adaptive Parametric Linear Model

3.1. Background Model
For each inspected surface, an original adaptive model is ap-

plied to subtract the anomaly-free background. In fact the back-
ground, the anomalous-free content of the image that represents
the inspected surface, acts here as a nuisance as it has no inter-
est for anomaly detection while it must be carefully taken into
account. The present paper proposes to use a parametric linear
model to represent the background. Such a model has, indeed,
indisputable advantages: it is simple and, hence, usually com-
putationally efficient and can be used within the well-founded
statistical theory of invariance to design the anomaly detection
method.

Again, let Z = {zm,n} denote the noisy image of size M × N.
The inspected area corresponding to image Z is split into non-
overlapping small blocks of size w and h (for width and height
respectively). Let us also denote zk the k-th block of the in-
spected image Z; though this block can be seen as a matrix of
pixels, it is represented as a vector for the application of the pro-
posed method, typically the pixels are read lexicographically.
The linear parametric model used in this paper is based on the
following model for the block zk, when no anomaly is present:

zk ∼ N(Hdk,Σk). (6)

Here N represents the Gaussian distribution thus the model (6)
belongs to the very usual one that represents a block zk as a
sum of non-anomalous content corrupted with additive Gaus-
sian noise. However, the present paper uses an original model
for the content, non-anomalous part, and uses a more realistic
model for the noise than the Additive White Gaussian Noise
(AWGN) that models all the pixels as realization of indepen-
dent and identically distributed (i.i.d) random variables. The
model of the noise is presented in detail in the next subsection.

The linear parametric model is an obvious model (6) to rep-
resent the content. It essentially consists in representing all the
pixels of the block zk as a weighted sum of basis vectors that
represent the columns of the matrix H. The weight of this sum
represents the vector of parameters dk. In this paper the model
of H is based on the following two dimensional algebraic poly-
nomial:

f (x, y) =

dx∑
i=0

dy∑
j=0

ci, jxiy j (7)

with dx and dy the degrees of the polynomial on x and y respec-
tively.
Over the block zk the (discrete) coordinates can also be put
into vector form, denoted as x and y the coefficients ci, j of
the polynomial (7) can also be put into a vector ck of size
(dx + 1) × (dy + 1). Denoting as a matrix F the polynomial
model:

F = (1, x, y, xy, . . . xdx ydy ),

the model of the background (7) can be written as:

E [zk] = Fck, (8)

where E represents the expectation.
The model (6) - (8) is simple and efficient enough for several

applications, see [36, 37, 38, 39] for examples in modeling of
Internet traffic and image processing. However, for other appli-
cations, as the one of wheel inspection presented in this paper,
the non-anomalous background is much too complex to be rep-
resented with a simple model that remains the same for all the
blocks. In fact, a trade-off must be found to keep the degrees of
the polynomial (7) as small as possible, for improving ensuing
detection performance, while representing with the highest ac-
curacy the content, to enhance the detection of anomalies within
the residual noise.

This trade-off leads us to the design of an adaptive model,
for which the matrix F does not remain the same but, instead,
changes to take into account the specificity of each block. To
this purpose, the proposed method actually exploits the shape of
the inspected surface to represent the pixels that share similar
profiles. The design of an adaptive linear model based on this
idea is done using the Principal Component Analysis (PCA).
PCA is a powerful tool to identify patterns in data, and high-
light their similarities. In fact, the first principal components
retain most of the variation present in the data, which can be
added to the model (8) to better approximate the background.
Indeed, multiple methods for dimensionality reduction, other
than the PCA, can be found in the literature. Probably the most
robust ones are sparse dictionary learning methods that proved
their efficiency, especially in image modeling [55]. However,
considering the PCA for our proposed model can be justified
by many reasons. First, our proposed model is mainly based
on a polynomial model which can be designed to ensure the
orthogonality between the model and the defect. Adding the
principal components to the model will not affect this orthog-
onality, which is crucial for the defect detectability as will be
discussed later in section 4. On the other hand, sparse dictio-
nary learning methods are much more robust than the PCA, and
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thus may incorporate a large portion of the defect in the back-
ground model. Second, in this paper, it is proposed to design
a background model accurate enough to represent a wide range
of surfaces without prior training step. The model is then com-
puted for each inspected surface on the image of the very same
surface itself. To this purpose, the PCA can be applied as it
can represent the observations without requiring a prior learn-
ing dictionary. A final reason can be mentioned is that the PCA
provides good results for a rather low computational complex-
ity, compared to other methods in the same category.

Similarly to the model (8) one can approximate the pixels’
value from the block zk as:

E [zk] ≈ Pk αk. (9)

where αk ∈ R` is the vector of weights for the different Princi-
pal Components and the size ` the number of selected principal
components. The Principal components that are added within
matrix Pk are extracted from the inspected image itself. The in-
dex k, here, emphasizes that for different blocks the part of the
principal components differs.

With the addition of the adaptive part due to the first few
components, the proposed model for representing the back-
ground, that is the expectation of the block zk (6), can be written
as :

E [zk] = Hk dk. (10)

where the matrix Hk is made of the polynomial basis vector(8),
from the matrix F and the first principal components (9), from
the matrix Pk. The matrix Hk is thus given by the concatenation
of those matrices:

Hk = (F|Pk) .

Similarly the weighting dk vector represents the contribution of
those different basis vectors.

The range of applications for the proposed parametric model
is not only limited to surface inspection, but can rather be used
for any application that requires a model of the nuisance pa-
rameters for their rejection [51]. In particular, parametric mod-
els that are based on a polynomial model have been extensively
used in image processing applications, such as image compres-
sion [52], or image coding [53]. Furthermore, the concept of
adding an adaptive part to the model, in order to aid the polyno-
mial part, has also proven its efficiency. It was mainly used in
image processing applications to help model the discontinuities
and edges in the image, whether for radiographic image inspec-
tion [4], or even to detect hidden data in images [32, 36]. As
for the particular domain of surface inspection, the proposed
adaptive model can be efficiently applied on partially smooth
surfaces, with low textures. In practice, the polynomial part
is primarily efficient to accurately represent homogeneous sur-
faces, or smooth surfaces, with little to no texture. Then, adding
the principal components will offer a higher flexibility, and will
enhance the performances of the model to handle minor surface
complexities. Hence, the proposed model can be used for the
inspection of a variety of surfaces, including steel surface [5],
ceramic tiles’ surface [54], glass surface [28], among others that
have mostly a low textured surface.

Consequently, the texture of the inspected surface will have
a major role in defining Hk. In total, 5 parameters have to be
properly tuned to accurately model the background, while en-
suring an efficient detection of defects. The choice of these
parameters essentially depends, on the one hand, on the level of
complexity of the background and its overall shape, and, on the
other hand, on both type and size of potential defects

First, the degrees of the polynomial dx and dy have to be large
enough to accurately model the background. Depending on the
level of complexity of the background in each direction, dx and
dy might be defined differently. The more the complexity in one
direction, the larger the value of polynomial degree in that same
direction. Furthermore, it is proposed to add an adaptive part to
the model, i.e. the principal components, to better approximate
the background. This adaptive part has a role to identify com-
mon features in the background, or patterns, and model them
using the PCA. In this paper, it is proposed to apply the PCA
in a single direction, which represents the direction of the main
pattern in the background, but indeed it can be applied on vari-
ous direction simultaneously. Only the first ` principal compo-
nents are added to the model. This number will increase with
the complexity of the pattern, which will be defined mainly by
the inspected surface shape. As a result, to more accurately
model the background, it is preferable to have large values for
the three parameters dx, dy and `.
However, having larger values for these parameters may result
in a large part of defects being modeled within the background.
Therefore, when subtracting the background from the original
image, a large part of potential defects will also be subtracted.
This would reduce the level of detectability of those defects.

Second, the width w and height h of each block mainly de-
pend on the potential defects size in the inspected area. If the
defect affects the majority of pixels inside the block, the es-
timate of the linear model parameters dk will be significantly
impacted by the presence of the defect. Consequently, a large
portion of the defect will be removed with the background sub-
traction, thus reducing the level of detectability. Therefore, it is
important to define the size of the block according to the poten-
tial defects size, in a way to ensure that the majority of pixels in
the block belong to the background. It is important to note that
in most cases, the defect surface is more textured than the back-
ground itself. Hence, even if the defect occupies the majority of
the block, it may always be detectable to a certain degree. This
is due to the fact that the parametric model is designed to repre-
sent the background, therefore the more textured surface of the
defect will not be well modeled and accordingly a portion of it
will remain after the background rejection.
On the other hand, the size of the block has to remain reason-
ably small such that the parametric model may be able to accu-
rately model the background. Larger blocks include more back-
ground data, and thus may require higher polynomial degrees
and more principal components to enable the good modeling of
the background.

Section 6.6 further discusses the choice of all those param-
eters, in the case of wheel surface inspection, and presents the
methodology used to select the most suitable values upon ex-
perimental data.
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3.2. Noise Model

The proposed method relies on the image of the inspected
surface. However, any image is corrupted during its acquisition
by various sources of noise. A usual model of noise corrupting
raw images (that are not processed for quality enhancement,
compression, etc.) can be obtained by considering the shot
noise separately, due to Poissonian process of photo-counting,
and the various read-out noises. In fact the former noise has the
specificity that its variance depends on the expected number of
counted photons. While on the opposite the latter noise has a
variance that depends on experimental setup (such as tempera-
ture, exposure time, etc.) that is constant for all the pixels.

It is usually assumed that the number of photons counted
over each pixel is high, so that the Poissonian process can be
approximated as a Gaussian distribution, and that the read-out
noise can also be modeled as a Gaussian random-variable [40,
41]. Hence, this gives a model for all the noises corrupting the
pixel at location (m, n) that can be written as follows:

zm,n ∼ N
(
µm,n, σ

2
m,n

)
(11)

where µm,n is the expectation of pixels’ zm,n, represents its the
noise-free value, and is the variance of all the noises is given
by:

σ2
m,n = a µm,n + b. (12)

These parameters (a, b) of the heteroscedastic noise model re-
main the same for all the pixels. Beside they depend on several
acquisition parameters, hence parameters (a, b) are also con-
stant for all the images taken with the same acquisition settings.
The model of the noise (11) - (12) is well known for being more
accurate than the usual AWGN model for raw images and al-
lows us to take into account the variance of each pixel in the
ensuing statistical test, to improve its accuracy [41, 42, 43].
Additionally, it is important to note that it is possible to use any
other type of images rather than the raw type, provided that the
appropriate noise model for that type of images is used [44, 45].
In fact, for many applications, the model of noise corrupting the
acquired image may be more complex, in which cases the noise
characterization becomes a major problem. Many researches
dealt with such cases, for instance by providing flexible ap-
proaches to modeling complex noise based on a robust version
of the PCA [56, 57]. In all cases, replacing the noise model
will only affect the normalization factor in the ensuing statis-
tical test. However, in the present application, obtaining raw
images is simple and ensures to keep as much information on
the inspected surface as possible; there is, hence, no need to use
a more sophisticated model for the noise corrupting such type
of images.
An example of the relationship between pixels’ expectation and
variance is illustrated in Figure 1. This figure shows the vari-
ance of pixels as a function of estimated expectation from the
same pixels along with the estimated noise variance estimated
from the model (12). Those estimates have been obtained from
a few RAW images.

In this work, it is supposed that the camera does not change
so it can be calibrated easily. It is thus assumed that the noise
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Figure 1: Illustration of the noise model showing, for several images, pixels’
variance σ2 as a function of their expectation µ

model parameters (a, b) are known. The only parameter that
has to be estimated, given an image of a surface under inspec-
tion, is the expectation of each pixel. However one can note
that the noise corrupting the raw images cannot be modeled
with i.i.d random variables, the celebrated Maximum Likeli-
hood Estimation (ML) does not coincide with the Least-Square
(LS). To tackle this estimation problem without applying a
time-consuming optimization algorithm a two-step approach is
proposed in this paper. A first estimation is obtained applying
the mere LS:

µ̃ls
k = Hk

(
HT

k Hk

)−1
HT

k zk.

Then, a rough estimation of the noise variance is obtained from
µ̃ls

k by:

Σ̃
ls
k = Iw×h × (a µ̃ls

k + b),

where Iw×h denotes identity matrix of size w × h. This rough
estimation of the covariance is thus reused to update the estima-
tion of the expectation using the well-known Weighted Least-
Square (WLS) given by:µ̃k = Hk

(
HT

k Σ̃
ls−1

k Hk

)−1
HT

k Σ̃
ls−1

k zk,

Σ̃k = Iw×h × (a µ̃k + b).
(13)

It is, of course, possible to continue this procedure. It has
been observed that this two-step method is a good trade-off be-
tween accuracy and computational time.

4. Statistical detection of anomalies

When inspecting an image of a surface with the goal of de-
tecting an anomaly, two situations may occur H0 = {there is
no anomaly} and H1 = {there is an anomaly}. As described
above, see Eq. (6), when there is no anomaly, any block of the
image can be modeled as zk ∼ N(Hkdk,Σk). On the opposite,
when an anomaly is present on the surface, any block can be
modeled as zk ∼ N(Hkdk + θk,Σk). Here θk represents the im-
pact of the anomaly on pixels expectation. As described above,
the anomaly affects a limited area of the image, therefore θk is
equal to zero except in a few blocks on which the anomaly is
located. Note that in this paper we consider that the presence of
the anomaly has no effect on the variance.
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Hence the goal of anomaly detection problem studied in the
present paper is to decide between these two following com-
posite hypotheses:H0 : {zk ∼ N(Hkdk,Σk) , ∀k ∈ {1, . . . ,K}}

H1 : {zk ∼ N(Hkdk + θk,Σk) , ∀k ∈ {1, . . . ,K}} ,
(14)

with of course, θk , 0 for some k.
Formally, a statistical test δ is a mapping δ : Rw.h 7→

{H0;H1}. The false alarm probability of a test is defined as:

α0(δ) = PH0 (δ(Z) = H1)

where PH0 denotes the probability under hypothesis H0. Con-
versely, the power of a test δ is defined as:

β(δ; θk) = PH1 (δ(Z) = H1),

which also corresponds to 1− α1(δ; θk) where α1 is the missed-
detection probability. We note that the power function β(δ; θk)
depends, of course, on the anomaly θk. When testing com-
posite hypotheses, the ultimate goal is to design a Uniformly
Most Powerful (UMP) test, which maximizes the power func-
tion and satisfies a prescribed constraint on false-alarm prob-
ability regardless the anomaly. However, such a test seldom
exists. In this paper it is proposed to apply the invariance prin-
ciple to remove the nuisance parameters Hkdk and to design a
Uniformly Best Constant Power (UBCP) test. Indeed, the ex-
pectation underH0 given by Hkdk has no interest for the testing
problem (14) but must be taken into account.

To remove the nuisance parameters using invariance the-
ory [46], the idea is to project the observations zk onto the or-
thogonal complement of the subspace spanned by the columns
of Hk. This is achieved by using the projector:

P⊥Hk
= Iw×h −

(
Hk

(
HT

k Σ̃
−1
k Hk

)−1
HT

k

)
Σ̃
−1
k , (15)

where the estimated covariance Σ̃k is given using the estimated
expectation µ̃k (13). One can note that the projection of ob-
servations zk onto P⊥Hk

corresponds to subtracting from the ob-
servation the estimated expectation µ̃k. However, because the
variance is not constant over all the pixels, it is necessary to
normalize the “residuals” by dividing each residual by its stan-
dard deviation. Those normalized residuals can be written as
follows:

rk = Σ̃
−1/2
k

(
P⊥Hk

zk

)
. (16)

where A−1/2 represents the “square root” of the matrix A de-
fined such as

(
A−1/2 × A−1/2

)−1
= A.

It is then easy to establish [4, 46, 47] that the norm of the
normalized “residuals” rk follows the distribution

‖rk‖
2
2 ∼

χ2
Υ(0) , ∀k ∈ {1, . . . ,K} underH0

χ2
Υ (%k) , ∀k ∈ {1, . . . ,K} underH1,

(17)

where χ2
Υ

(%k) denotes the non-central χ-squared distribution
with Υ = w × h − p degrees of freedom, here p denotes the

number of columns of Hk, and the non-central parameter %k un-
der hypothesisH1 is given by :

%k =
∥∥∥∥Σ̃−1/2

k P⊥Hk
θk

∥∥∥∥2

2
. (18)

Here %k denotes the “anomaly-to-noise” ratio [4] and is essen-
tial to define how detectable the anomaly is.

Based on the residuals rk and their distribution, see Eq. (17),
the UBCP test can be written as follows

δ =

H0 if ‖rk‖
2
2 ≤ τ

H1 if ‖rk‖
2
2 > τ,

(19)

where, in order to guarantee the false-alarm probability α0, the
decision threshold τ is set as follows:

τ = F−1
χ2

Υ

(1 − α0; 0) (20)

where Fχ2
Υ
(x, %k) and F−1

χ2
Υ

(x, %k) resp. represent the non-central

χ2 cumulative distribution function and its inverse with non-
centrality parameter %k.
Similarly the power function of the test is given by:

β(δ, θk) = Fχ2
Υ
(τ, %k). (21)

One can note from the previous results, Eq. (20)-(21) two im-
portant things. First of all, the threshold τ only depends on the
false-alarm probability α0 and is thus constant for all the blocks.
Second, the detectability of the anomaly only depends on the
non-centrality parameter %k (18). More precisely, Eq. (18)
shows that %k is defined as the part of the anomaly θk that lies
in the orthogonal complement of the subspace spanned by Hk.
Hence, an anomaly θk is detectable if and only if P⊥Hk

θk , 0.
To better understand the effects of the rejection of nuisance

parameters on the defect detectability, let us consider the sim-
ple case where the observations zk ∈ R3 and dk ∈ R, shown
in figure 2. In this case, the nuisance parameter is scalar
(rank(Hk) = 1), and the column space of Hk is a vector R(Hk).
Its orthogonal complement R(Hk)⊥, also referred to as the par-
ity space, is then a plane orthogonal to the vector spanned
by Hk, and is depicted in blue in figure 2. When projecting
the anomalous observations zk onto the parity space, the nui-
sance parameters will be rejected, and only the projection of
the anomaly P⊥Hk

θk will remain in the residuals. Consequently,
the detectability of the anomaly θk will mainly depend on how
much of the anomaly is present in the parity space, depicted by
the value P⊥Hk

θk.
Then, in this work, it is proposed to normalize remaining resid-
uals by taking into consideration the noise corrupting the im-
age. To this purpose, the more realistic heteroscedastic model
of the noise has been used, allowing to establish with high-
est precision the theoretical statistical properties of the ensu-
ing test. This noise model represents the variance of the noise
corrupting the image as a linear combination of the pixel’s ex-
pectation µk. Hence, because the variance is not constant over
all the pixels, it is necessary to normalize the residuals by di-
viding each residual by its standard deviation. This procedure is
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Figure 2: Illustration, in R3 of observations along with their projections on the
parity space R(Hk)⊥ and a surface of constant power for which “anomaly-to-
noise ratio” %k , see (18) is equal.

illustrated in figure 2. Let us consider two different anomalies
θk and θ′k that have different projections onto the parity space
P⊥Hk
θk , P⊥Hk

θ′k. If these two anomalies belong to the same sur-

face
{

Sc :
∥∥∥∥Σ̃−1/2

k P⊥Hk
θk

∥∥∥∥2

2
= c2

}
with c a positive constant, this

means that they have the same value of non-centrality parameter
%k after normalization, thus have the same level of detectability.
Indeed, the surface Sc is defined by the heteroscedastic noise
model, and thus it is shaped like a cone with the radius increas-
ing with µk.

We have observed that the proposed adaptive model is very
efficient in the sense that it represents the background accu-
rately (non-anomalous part of the inspected wheel) while pre-
serving the vast majority of the anomaly within the orthogonal
complement.

5. Wheel Inspection Characteristics

The use of AVI systems has been extending to reach vari-
ous applications. For wheel surface inspection, the detection
of “appearance defects” is one of the most challenging tasks
that has not been studied yet. “Appearance defects”, such as
scratches or painting drops, do not have a direct impact on the
proper functioning of the wheel, but rather are associated with
the aesthetics of the product. These defects are located on the
upper surface of the wheel, the one visible to the client. There
is a large variety of “appearance defects” that can be classified
according to their shape, size, and location on the wheels’ sur-
face.
As for the wheels, there are plenty of wheel designs with dif-
ferent shapes and sizes, but they all have some common fea-
tures and essential elements that characterize a wheel. Based
on those elements, it is possible and necessary to define the re-
gions of interest (ROI) on the surface of the wheel, in order to
carry out properly the wheel inspection.

Center
Zone

Ventilation
Zone

Rim
Zone

Galbe
Zone

(a) Wheel parts

Pilot hole 

Countersinks 

Valve 
hole 

Ventilation 
holes 

(a) Key elements

Figure 3: Description of the different elements of a wheel

5.1. Region of Interest Extraction

The face of the wheel is a complicated surface to inspect.
Each wheel is designed with specific parameters that define
its form and geometry. These parameters can be used to split
the wheel into different parts (zones), on which the detection
method will be applied, see Figure 3(a). Multiple elements can
be found in these zones that have to be identified in order not
to consider their presence as a defect and, on the opposite, to
detect anomalies on those elements. The key elements are the
pilot hole, the countersinks, the valve hole and the ventilation
holes, see Figure 3(b).

Those elements must be detected and localized prior to the
detection of anomalies. Hence, let us first briefly describe how
those key elements are detected. Indeed, the position of those
elements will be used to perform a geometrical readjustment,
which can be considered as a self-calibration.

It is important to note that the parameters describing the ge-
ometry of the wheel, and especially the key elements mentioned
above, are known because the design of the wheels currently
manufactured is also known. The knowledge of those parame-
ters, such as the wheel radius and pilot hole radius, for instance,
is useful as it allows to reduce the search area.

First of all, it is needed to detect the center of the wheel that
coincides with the center of the pilot hole. The detection of
the pilot hole and the localization of its center is carried out us-
ing the Circular Hough Transform (CHT). This is one of the
most robust and commonly used methods for circular shape
detection [33]. In addition, the prior knowledge of the radius
makes the CHT computationally very efficient as the only two
unknown parameters are the coordinates (x0, y0) of the center
of the pilot hole. An example of the application of CHT for the
pilot hole detection and localization of its center is presented in
Figure 4.

Once the Pilot hole is located, the countersinks and the valve
hole can be detected. Once again, knowing the distance from
the wheel center to the countersinks and the valve hole helps
reduce the search area along with the computational complex-
ity. The countersinks and the valve hole are also detected using
the CHT. Note that, because on any wheel the valve hole is al-
ways either in front of a countersink, Figure 3(a), or between
two countersinks, Figure 3(b), the detection of the valve hole is
done on a small number of areas that correspond to the known
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(a) Wheel center (b) CHT result (c) Hole Detection

Figure 4: Illustration of steps for pilot hole detection

Figure 5: Detection result

distance from the pilot hole center.
The last and most complicated step is the detection of the ven-
tilation holes. Those elements may exhibit a wide range of
different designs for aesthetic reasons but also in order to re-
duce the weight of the wheel with minimal structural impact.
This high variety in shape of the ventilation holes explains the
choice of the active contour models, or Snakes, for their detec-
tion [34, 35]. Such models have been extensively used in im-
age segmentation in order to detect complex geometrical forms.
The final result of the detection procedure to locate all those el-
ements is shown in Figure 5.

Once the pilot hole, countersinks, valve hole and ventilation
holes are detected and located, one can split the wheel within
several areas, see Figure 3(a), which are all inspected sepa-
rately. Note that, though not very original, the detection of those
elements has to be extremely robust as any error will lead to a
false alarm of the anomaly detection method. To give an idea,
the number of wheels produced over one year is about 4 million
wheels, and yet, not a single error has been observed in those
key elements location.

5.2. Data Preparation

AVI systems for anomaly detection have been widely used
for their efficiency and unbiased results compared to human in-
spection. But, on the other hand, one great drawback in certain
cases is that such systems might be time-consuming. Thus the
urge to find new solutions that are fast and reliable.

A first solution might be the use of simple and basic pro-
cessing methods for anomaly detection, such as the gradient
filtering for instance. However, such methods usually go short
in terms of detection accuracy and precision, thus making them
insufficient for the client requirements. Another solution is to
use multitasking, or parallel processing. In fact, this approach
highly depends on the inspected product, together with other
important factors.

Figure 6: Circular galbe

For wheel inspection, the fact that all the different zones are
totally independent from one another, allows us to split the
wheel, and apply the detection process in parallel on each zone.
Another important advantage in splitting the wheel is that each
individual zone has specific characteristics and features, thus
specific model parameters. As we can see, all the different
zones of the wheel described in figure 3(a) have a circular form.
To apply appropriately the detection process, a rectangular im-
age is required. Thus, we proceed by transforming the circular
form into a rectangular one.

To explain the data preparation procedure, the galbe zone is
considered as an example (see Figure 3(a)).
First, we start by isolating the galbe zone from the rest of the
wheel, as illustrated in figure 6. The second step is to unfold
the circular area to create a rectangular one. Let us denote
(r1, r2) the lowest and highest radius of the galbe area respec-
tively. Normally, a circle of radius r has a perimeter of 2πr. As
r2 > r1, hence 2πr2 > 2πr1, the circular area will turn into an
isosceles trapezoid with a length ratio of r2/r1. In fact, to get
a rectangle, either you define the length as 2πr1, thus you lose
some pixels, or you define it as 2πr2 and you add the missing
pixels to complete the form. For the purpose of not losing any
information, it is clearly best to define the length of the result-
ing matrix as 2πr2 and add the missing pixels by duplicating its
neighbors. It is worth noting that the number of missing pixels
is proportional to the ratio r2/r1, which is in our case less than
1.5 for all the different types of wheels.

As a result, to unfold the circular galbe properly, the resulting
rectangular matrix must be of height r2 − r1 + 1 and of length
2πr2. In fact, the unfolding procedure can be represented as
a transition from the Polar coordinate system to the Cartesian
coordinate system. Let us denote (xc, yc) the coordinates of the
center of the wheel. Each pixel of the galbe in the Polar coor-
dinate system is represented by its radius r and its angle θ. The
transition system can be represented as :

x = xc + r ∗ cos(θ)
y = yc + r ∗ sin(θ)

(22)

where (x, y) are the Cartesian coordinates of the correspondent
Polar coordinates (r, θ). Figure 7 represents the resulting un-
folded galbe to be inspected.



K. Tout, R. Cogranne, F. Retraint / Signal Processing 00 (2017) 1–17 10

Figure 7: Typical example of the unfolded galbe of a wheel.

6. Experiments and results

6.1. Common core of all experiments

All the images used in this paper are raw images (i.e. without
any processing operation) using an area scan camera installed
over the production line of a wheel factory that produces around
20 000 wheels per day. The acquired raw images are made of
2046×2046 pixels of 12 bits depth ; in most of the experiments
presented in this paper, only the red channel is used for simplic-
ity and clarity.
Regarding to the adaptive part of the background model, as
mentioned in the section 3.1, it is beneficial to use the shape
of the inspected surface to better design this part of the model.
Due to the circular shape of the wheel, we applied the PCA by
considering the columns of the unfolded image as different ob-
servations. Hence, the columns of Pk in equation (9) represent
the part of the first principal components, computed for each
inspected wheel on the image of the very same wheel itself,
that corresponds to the location along the rows of the extracted
block zk and reshaped such that it is constant along the rows.
Then, in order to estimate accurately the heteroscedastic noise
model parameters (a, b), a batch of raw images of test pattern
has been used. As mentioned previously, these parameters (a, b)
only depend on acquisition parameters. All the different types
of wheels considered in this paper are acquired using the same
camera settings; the parameters (a, b) are, thus, constant for all
the images. Using the method proposed in [42] for the esti-
mation of parameters (a, b) from the noise model resulted in
a = 2.23 and b = −420.
Finally, to gain a better perspective on the average size of the
defects in the wheel image, it is worth noting that each mil-
limeter of the wheel surface corresponds to about 2 pixels in
the wheel image. This ratio is a rough average over all the man-
ufactured wheel types as it depends on the wheels height and
on the camera settings.

The rest of this section is divided into four parts. In the first
part, the advantages of adding the adaptive part, based on the
PCA, in the proposed model of the background are proven.
The second part investigates the advantages of using the het-
eroscedastic noise model rather than the usual AWGN model.
The third part is aimed at studying the performance and accu-
racy of the proposed adaptive model of the background. And
finally, the fourth and last part compares the performance ob-
tained using the proposed detection method with performance
from other recently proposed surface defect detection methods.
Note that the first two parts of this section can also be consid-
ered as a comparison between the proposed method and other
parametric methods that neither contain adaptive parts within
linear model, nor take into account accurate imaging system
heteroscedastic noise model.

Figure 8: Example of a typical defect that it is wished to detect

6.2. Improvement of Detection Accuracy Due to the Model
Adaptivity

Figure 8 presents an example of the galbe zone, with a typical
defect that represents the lower limit of the detection criteria,
above which the defect is intended to be detected. It has a cir-
cular form which can be considered to simulate various types
of real defects. Note that the defect is highlighted with a red
circle as it is rather difficult to see from naked eyes. This defect
is used in the first and third part of the experiments.

In the first part of the experiments, the goal is to investigate
the advantages of adding the adaptive part, in other words, the
Principal Components, to the proposed background model. To
this purpose, it is needed to compare the performance of the
proposed model in two different scenarios, where in the first
scenario the background model consists of the polynomial part
and the adaptive part, and in the second scenario the back-
ground model only consists of the polynomial part.

The defect in Figure 8, has been used to perform a Monte-
Carlo simulation on 3 000 images. Because it is hardly possi-
ble to obtain many images with similar defects, we picked ran-
domly a set of 3 000 non-anomalous images on which the defect
has been superimposed. In fact, it is rather difficult to obtain
images with defects, while images of wheels without any de-
fect are easy to obtain. The proposed model parameters have to
be adjusted in a way to highlight the effect of the adaptive part.
As the Principal Components are used to assist the polynomial
function to better model the complexity of the wheel along the
rows, it is then possible to increase the block height and study
the performance. Therefore the block is set to a size of h = 40
(height) and w = 40 (width).

Figure 9 and Figure 10 compare the mean power value of the
statistical test performed on the 3 000 images, in the two-case
scenarios mentioned above, for different values of the defect
intensity and defect radius respectively. In Figure 9 the defect
radius is set to 5, and in Figure 10 the defect intensity is set to
150. In both cases, the false-alarm probability is set to 0.01.

In the two figures, the blue plots have been obtained using the
proposed adaptive model with the degrees of the polynomial set
to dy = 5 (along the height) and dx = 2 (along the width) and the
number of Principal Components added to this model is ` = 3
giving us a total of p = 21 parameters, which is very small
compared to the number of pixels (1600). As for the red plots,
they have been obtained using the same polynomial degrees,
but without any Principal Components added.

As it can be clearly seen in the two Figures, the model with
Principal Components added outperforms the model without
any Principal Components added in terms of detection power.
For a defect radius of 5 and a defect intensity of 150, the detec-
tion power values can be read from both figures. If no Princi-
pal Components are added, the detection power only reaches a
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Figure 9: Real power curves with ` = 3 PCs and ` = 0 PCs function of the
defect intensity with a fixed defect radius = 5
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Figure 10: Real power curves with ` = 3 PCs and ` = 0 PCs function of the
defect radius with a fixed defect intensity = 150

value of 0.12. By adding 3 Principal Components to the model,
the detection power increases to a value of 0.42, which is al-
most 4 times higher than the previous case. One can also notice
from Figures 9 and 10 that the two plots converge to a nearby
value of 1 with the increase of the defect intensity or radius.

6.3. Improvement of Detection Accuracy Due to Heteroscedas-
tic Noise Model

In this section it is aimed to highlight the advantages of using
the heteroscedastic noise model rather than the usual AWGN
model. As mentioned in subsection 3.2, the heteroscedastic
noise model expresses the relationship between pixels variance
σ2 and their expectation µ as a linear polynomial. As for the
AWGN model, the variance σ2 is considered constant all over
the image, independent from pixels expectation.

To investigate the choice of the noise model, it is necessary
to study the effect of pixels’ expectation on the normalization
process. In fact, the noise model that one uses defines the co-
variance matrix which has a primary role to normalize the resid-
uals norm. From (17), the empirical distribution of the normal-
ized residuals norm must follow a central χ-squared distribu-
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Figure 11: Block 1 and Block 2

200 300 400 500 600 700 800 900
0

2

4

6

8

10

12

10−3

p
d
f
(|
|r

k
||
2 2
)

Values ||rk||
2
2

 

 

Empirical distribution for block 1

Empirical distribution for block 2

Figure 12: Empirical distributions of normalized residuals norm over block 1
and block 2 using the heteroscedastic noise model

tion with Υ = w × h − p degree of freedom. Any inaccurate
normalization will have a direct effect on the centrality of the
non-anomalous normalized residuals norm.

Figure 11 represents two blocks within two different regions
of the galbe zone. As one can notice, the block 1 is located on
a bright region of the galbe zone, with high pixels’ expectation
values. As for the block 2, it is located on a darker region of the
galbe zone, which means lower values of pixels’ expectation.
It is important to note that Block 1 and Block 2 do not contain
any type of defect.
Those two blocks are used to perform a Monte-Carlo simulation
on 3 000 non-anomalous images using the proposed adaptive
model, the first time with the heteroscedastic noise model, and
the second time with the usual AWGN model.

Figure 12 represents the empirical distributions of normal-
ized residuals norm ‖rk‖

2
2 for Block 1 and Block 2 using the

heteroscedastic noise model. The two distributions are centered
around the same value of w× h− p = 20× 20− 21, which indi-
cates that the normalization is adapted to the pixels expectation
variation.

On the other hand, Figure 13 represents the empirical distri-
butions of the normalized residuals norm ‖rk‖

2
2 for Block 1 and

Block 2 using the AWGN model. We observe that the empirical
distribution for Block 1, which has high values of pixels expec-
tation, is shifted to the right, while the empirical distribution for
Block 2, which has low values of pixels expectation, is shifted
to the left.

This result can be explained by the model from Equa-
tion (12). By using the AWGN model, the normalization of the
residuals norm is independent from pixels’ expectation values.
As a consequence, the variance is considered constant all over
the image. In reality, the relationship between pixels’ expec-
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Figure 13: Empirical distributions of normalized residuals norm over block 1
and block 2 using the AWGN model

tation and variance is a linear polynomial (12) with a positive
slope value (see Figure 1), which means that the pixel variance
increases with its expectation. For Block 1, having higher pix-
els’ expectation values in reference to the average expectation
value, implies higher variance values, which also indicates the
need for a higher normalization factor. As for Block 2, it is the
other way around; Lower pixels expected values in reference
to the average expectation value, implies lower variance values,
which also indicates the need for a lower normalization factor.

These results show the efficiency of the heteroscedastic noise
model to achieve the appropriate normalization of the residuals
norm. In conclusion, one can clearly state that, in case of deal-
ing with raw images, the AWGN model is not efficient, and that
the use of the heteroscedastic noise model is crucial to achieve
the perfect normalization results.

6.4. Comparison Between Empirical and Theoretically Estab-
lished Results

In the third part of the experiments, it is wished to show the
relevance of the proposed statistical test and the accuracy of the
theoretical results. Once more a Monte-Carlo simulation has
been performed on 3 000 images with and without the presence
of the defect shown in Figure 8. This defect has an intensity of
200 and a radius of 5.

Figure 14 presents the empirical distribution of normalized
residuals norm ‖rk‖

2
2 on which the proposed test is based, see

Eq. (19). It has been obtained using the proposed adaptive
model over blocks with size h = 20 (height) and w = 20
(width). Note that for this experiment, the size of the block
has been reduced to more precisely model the background. The
degrees of the polynomial used are dy = 5 (along the height)
and dx = 2 (along the width) and the number of Principal Com-
ponents added to this model is ` = 3.
The gap between the empirical distribution under H0 and the
empirical distribution under H1 is due to the non-central pa-
rameter %k under hypothesisH1 (18). As mentioned above, the
defect used in this simulation represents the lower limit of the
detection criteria, above which the defect is intended to be de-
tected. With this information in mind, Figure 14 shows that
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Figure 14: Empirical and theoretical distributions of normalized residuals norm
for images with and without defect
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Figure 15: Real and Theoretical ROC Curves

the detection of the defect is possible with certain classification
error.

Besides, Figure 14 also compares the empirical distribution
under H0 with the theoretical one (17). A small discrepancy
can be observed between the empirical and the theoretical dis-
tributions.

The effect of the discrepancy can be illustrated in Figure 15
which represents the real and theoretical ROC curves. As one
can notice, the performance of the proposed model is slightly
lower than it is expected theoretically.

This can be explained by the two following facts. First, the
estimation of pixels expectation is not perfect and has itself a
non-negligible variance, which is not yet taken into account in
the proposed test. Second, the proposed adaptive model, though
efficient, is not perfect and, hence, maybe sometimes unable to
describe the background with highest accuracy, putting part of
the non-anomalous background among the residuals.

6.5. Comparison With the State-of-the-art

Finally, in this last section of numerical results, it is wished to
compare the performance of the proposed method with methods
recently proposed in the literature for surface defect detection.
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To this intent, Monte-Carlo simulations have been performed
on 3 000 images with and without the presence of a defect that
has the same form as the one shown in Figure 8, but with an
intensity of 300 and a radius of 5.
The first simulation has been performed using the proposed
adaptive model over blocks with size h = 20 (height) and
w = 20 (width), with the degrees of the polynomial set to dy = 5
and dx = 2 and the number of Principal Components added to
this model set to ` = 3.
The second simulation has been performed using the detection
method detailed in [48]. It consists of two phases: 1) a global
estimation based on the Phase Only Transform (PHOT) method,
which considers the defect as an abrupt change in the image
regularity, thus removes the regularity by normalizing the im-
age’s Fourier Transform by its magnitude. 2) Then a local re-
finement procedure which locally refines the estimated region
based on the distributions of pixel intensities derived from de-
fect and defect-free regions. Two parameters have to be tuned
correctly depending on the input image texture and defect size:
the Mahalanobis distance which is the threshold value for de-
tection, and the size of the squared patch used in the local re-
finement step. They are set to 4.0 and 5 × 5 respectively, as
suggested in the paper [48].
The third simulation uses the detection method introduced
in [49]. They propose a regularity measure for defect detection
in non-textured and homogeneously textured surfaces based on
PCA. The method consists of a small neighborhood window
that slides over the inspected image and for each window the
regularity measure is then derived from the PCA. Again, two
parameters have to be properly selected, as they have major ef-
fects on the detection performance. First, a control constant K
which defines the threshold value for detection. A small value
of K will generate false alarms, whereas a large value of K
will result in high miss-detection rate. In order to choose the
proper value of K, the paper proposes to select the minimum K
value that generates no false alarms when applied to a defect-
free training sample. For the proposed performance test, the
proper value of K is 3. The second parameter to be tuned is
the sliding window size. It should be large enough to contain
the entire defect area, however, if it is excessively large it may
smooth out the defective area and result in miss-detection. The
defect implemented in the performance test has a radius of 5,
thus the selected window size is 15 × 15.
Finally, the proposed adaptive method is compared to the de-
tection method presented in [50] which consists of four sub-
systems: sensing, detection, classification and post-processing.
Only the detection step is for interest in this study. It is based
on a foreground extraction step using a median filter, and then
a multi-zone detection technique, where each image is divided
into multiple overlapped squared areas that undergo a thresh-
olding procedure. The most crucial parameter that achieves an
efficient defect detection performance is the median filter size.
After many tests on defective and defect-free images, it is set to
13 × 13.

Figure 16 presents the corresponding ROC curves of the
four mentioned detection methods. The proposed adaptive
method outperforms the detection method based on the regular-
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Figure 16: ROC curves of the four detection methods

ity measure [49] and the one based on the median filtering [50].
However, compared to the method based on PHOT [48], the
ROC curves seem to be indistinguishable. For a better look, a
zoomed-in portion of the plot is illustrated on the same figure,
with a false-alarm probability ranging between 0 and 0.03, and
a detection probability between 0.8 and 1. This subplot shows
that the proposed adaptive method performs slightly better than
the one based on PHOT. Still, this comparison cannot be con-
sidered as conclusive.

Therefore, to present a more consistent comparison, it is
wished to analyze the effect of the defect radius on the per-
formances of the proposed adaptive method and the one based
on PHOT. To this purpose, a similar Monte-Carlo simulation as
the one seen in the first part of the experiments is performed,
to represent the detection probability value, function of the de-
fect radius, with a defect intensity of 150, and a false-alarm
probability of 0.01. The degree of the polynomial used for the
proposed adaptive model is dy = 5 and dx = 2 and the number
of Principal Components added is ` = 3. Additionally, another
goal of this simulation is to show the effect of the block size
used in the proposed adaptive model on the detection perfor-
mance. Hence, three different block sizes have been considered
in this simulation.

Figure 17 illustrates the simulation results. The green plot,
which corresponds to the method based on PHOT, starts off with
the highest detection probability for very small defects with a
radius less than 3. It reaches its peak for defects with a radius
ranging between 5 and 7. Then the performance starts to de-
cline with the size of the defect. That can be explained in the
fact that its detection phase is based on a global method, the
PHOT, which must be applied on the whole image at once in
order to properly remove the image regularity. Hence, a small
defect is seen as an abrupt irregularity while a larger defect be-
comes slowly considered as a part of the image regularity, and
thus partially removed.
As for the proposed adaptive method, it can be noticed that the
performance highly depends on the considered block size. For
small defects, using a smaller block size leads to a higher de-
tection probability. For a defect radius ranging between 2 and
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4, the proposed adaptive model with a block size of 20 × 20 is
the best choice. For a defect radius ranging between 4 and 7, a
block size of 30×30 is more appropriate. And for larger defects,
a larger block size of 40×40 becomes the superior choice. That
is due to the fact that our method considers that the block is a
background image containing a defect, thus the defect occupies
a smaller space in the block than the background itself. For
a specific block size, the performance of the proposed method
continues to rise, with the slope becoming smaller as the defect
is becoming larger, till it reaches a certain point when the de-
fect occupies the totality of the block at which the performance
drastically declines. This sudden decline in the performance
can be observed in Figure 17 for a block size of 20 × 20 at a
defect radius of 9, and for a block size of 30× 30 at a defect ra-
dius of 14. Therefore, depending on the inspected surface, and
on the range on the size of potential defects, one can choose the
appropriate block size that gives the best performance.
Finally, this comparison also shows that, for various defect
sizes, the proposed adaptive method outperforms the method
based on PHOT.

6.6. Real defects

In this section, it is wished to present some results by apply-
ing the proposed adaptive model on wheel images containing
real defects located on the surface of the wheel. As mentioned
above, a number of images with and without defects, have been
acquired from a wheel factory that produces around 20 000
wheels per day, among which only a small portion presents a
defect.

For each example image with defects, the data preparation
procedure presented in Section 5.2 has been applied to obtain
the unfolded image of the specific zone of the wheel that con-
tains the defect. Then, the proposed adaptive model has been
used to model the unfolded image background and create a
model image that ideally does not contain any trace of the de-
fect. Finally, the results are illustrated by a residual image, re-
sulting from the subtraction of the model image from the un-
folded image.

Table 1: Proposed Adaptive Model Parameters

Zone w h dx dy `

Galbe Zone 50 25 2 5 3
Rim Zone 40 15 2 5 5
Ventilation Zone 30 20 2 5 3

Choosing the appropriate parameters for the proposed adap-
tive model is vital to achieve the best detection results. Each
zone of the wheel has its unique features and characteristics,
according to which the choice of the proposed adaptive model
parameters highly depends. These features and characteristics
are not only related to the background homogeneity or pattern,
but also to the defect size and shape which dependent much on
the specific zone on which the defect is located.

The example images used in this experiment represent nu-
merous types of wheels, with various designs and dimensions,
containing defects that are located on various zones of the
wheel, as the galbe zone, the rim zone and the ventilation zone.
Table 1 lists the proposed adaptive model parameters for each
zone of the wheel. The parameters described are the block
width w and the block height h, the degrees of the polynomial
dx and dy, and the number of added Principal Components `.
A detailed, but rather general, discussion on the choice of these
parameters has been done in Section 3. In the following, a more
in depth explanation of the parameters choice for each zone will
be provided, based on the zone texture and potential defect size.

First, it is obvious that, due to the circularity of wheels, in
all the different zones pixels share similar values along the hor-
izontal direction, after unfolding process. This characteristic
justifies the choice of dx to a relatively low value of 2 for all
the different zones. Along the vertical direction, the texture
is much more complex with multiple light reflection artifacts,
thus the necessity of higher polynomial degree dy = 5 and the
assistance of the Principal Components ` = 3. The Rim zone
presents a special case as it contains sharper edges along the
rows which explains the use of a higher number of Principal
Components (` = 5) to better model the background.

Regarding the block size, the choice of its width w and height
h is mainly related to the defect size, although its height must
be always maintained to a low value to help model the complex
background along the rows. Briefly speaking, the galbe zone is
the largest zone of the wheel, and defects located in this area are
usually bigger in size, thus the choice of w = 50 and h = 25.
Defects located on the rim zone, which is the boundary zone
of the wheel, are usually medium sized scratches caused by the
mishandling of the product, hence the choice of w = 40 and a
lower value of h = 15 due to the special case mentioned above.
Finally, defects located on the ventilation zone are usually of
small size as they are trapped between the ventilation holes,
which explains the choice of w = 30 and h = 20.

Following this discussion, it is possible to understand the
variability of these parameters for the different zones of the
wheel. However, to properly determine the exact values of the



K. Tout, R. Cogranne, F. Retraint / Signal Processing 00 (2017) 1–17 15

model parameters for each zone, it has to be performed by sim-
ulations. To this purpose, multiple simulations, with different
values of model parameters, have been performed to ensure the
best detection efficiency. For each simulation, a different com-
bination of model parameters has been used, with the goal to
maximize the detection power β for a fixed value of false alarm
α. These simulations were performed in two steps; The first
step was defining the size of the block w and h according to
the potential defects sizes that could be present on each zone
of the wheel. Then, in the next step, multiple combinations of
the model parameters dx, dy and ` were tested to determine the
ones that maximize the detection power β for a fixed value of
false alarm α with the pre-defined block size.

Figure 18 presents, for a small set of example images, its
corresponding unfolded image, model image and residual im-
age, resulting from the use of the proposed adaptive model with
the proper parameters corresponding to the zone on which the
defect is located.

7. Conclusion

This paper studies the problem of anomaly detection on
wheels surface by analyzing digital images captured during the
factoring process. The proposed method is based on the de-
tection of wheels elements for analyzing the different zones
of a wheel separately. The main originality of the proposed
approach is the use of an adaptive linear model for the non-
anomalous background. This model is rather simple, very ac-
curate and preserves most of the anomaly within the residuals.
Because the proposed model is linear it can be used quite simply
within hypothesis testing theory. A statistical test is proposed
in this paper for a fully automatic scheme.
Numerical results show the high accuracy of the proposed
model and the high performance of the proposed statistical test.
The influence of the model parameters will be studied on a wide
range of wheels to find the most accurate ones and the variance
of the estimations will be taken into account to be able to estab-
lish with accuracy the performance of the proposed test.
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[27] Haindl, M. & Mikeš, S.(2004). Model-Based Texture Segmentation. In-
ternational Conference Image Analysis and Recognition, pp. 306–313,
Springer Berlin Heidelberg.

[28] Mery, D. & Medina, O.(2004). Automated Visual Inspection of Glass
Bottles Using Adapted Median Filtering. Springer Berlin Heidelberg pp.
818–825.

[29] Chen, C. H., Pau, L. F., Wang, P. S. P.(2010). Handbook of pattern recog-
nition and computer vision, vol. 27, World Scientific.

[30] Koch, C., & al,.(2015). A review on computer vision based defect detec-
tion and condition assessment of concrete and asphalt civil infrastructure.
Advanced Engineering Informatics, vol. 29, no. 2, pp. 196 – 210, Infras-
tructure Computer Vision.

[31] Cogranne, R. & Retraint, F.(2013). An asymptotically uniformly most
powerful test for lsb matching detection. Information Forensics and Se-
curity, IEEE Trans. on, vol. 8, no. 3, pp. 464–476.



K. Tout, R. Cogranne, F. Retraint / Signal Processing 00 (2017) 1–17 16

Unfolded image Model image Residual image

Figure 18: Images of wheels with various defects along with their corresponding model image and residual image



K. Tout, R. Cogranne, F. Retraint / Signal Processing 00 (2017) 1–17 17

[32] Cogranne, R., & al,.(2014). A local adaptive model of natural images for
almost optimal detection of hidden data. Signal Processing, vol. 100, pp.
169 – 185.

[33] Illingworth, J. & Kittler, J.(1988). A survey of the hough transform. Com-
puter vision, graphics, and image processing, vol. 44, no. 1, pp. 87–116.

[34] Kass, M., Witkin, A., & Terzopoulos, D.(1988). Snakes: Active contour
models. International journal of computer vision, vol. 1, no. 4, pp 321–
331.

[35] Lankton, S. & Tannenbaum, A.(2008). Localizing region-based active
contours. Image Processing, IEEE Trans. on, vol. 17, no. 11, pp. 2029–
2039.

[36] Sedighi, V., Cogranne, R., & Fridrich, J.(2016). Content-adaptive
steganography by minimizing statistical detectability. Information Foren-
sics and Security, IEEE Trans. on, vol. 11, no. 2, pp. 221–234.

[37] Yin, H., & al,.(2005). Network traffic prediction based on a new time
series model. Journal of Communication Systems, vol. 18, no. 8, pp.
711–729.

[38] Nguyen, T. N., & al,.(2015). Detection of interest flooding attacks in
named data networking using hypothesis testing. Information Forensics
and Security (WIFS), IEEE International Workshop on, pp. 1–6.

[39] Nguyen, T. N., & al,.(2017). Interest Flooding Attack Detection in Real
Environment Using Hypothesis Testing. (submitted).

[40] A. Foi, A., & al,.(2008). Practical poissonian-gaussian noise modelling
and fitting for single-image raw-data. Image Processing, IEEE Trans. on,
vol. 17, no. 10, pp. 1737–1754.

[41] Thai, T. H., Cogranne, R., & Retraint, F.(2014). Statistical Model of
Quantized DCT Coefficients: Application in the Steganalysis of Jsteg Al-
gorithm. Image Processing, IEEE Trans. on, vol. 23, no. 5, pp. 1980–
1993.

[42] Thai, T. H., Cogranne, R., & Retraint, F.(2014). Camera model identifi-
cation based on the heteroscedastic noise model. Image Processing, IEEE
Trans. on, vol. 23, no. 1, pp. 250–263.

[43] Thai, T. H., Retraint, F., & Cogranne, R.(2014). Statistical detection of
data hidden in least significant bits of clipped images. Signal Processing,
vol. 98, pp. 263 – 274.

[44] Thai, T. H., Retraint, F., & Cogranne, R.(2015). Generalized Signal-
Dependent Noise Model and Parameter Estimation for Natural Images.
Digital Signal Processing, vol. 114, pp. 285–297.

[45] Thai, T. H., Retraint, F., & Cogranne, R.(2016). Camera model identi-
fication based on the generalized noise model in natural images. Digital
Signal Processing, vol. 48, pp. 250–263.

[46] Fouladirad, M., Freitag, L., & Nikiforov, I.(2008). Optimal fault detection
with nuisance parameters and a general covariance matrix. International
Journal of Adaptive Control and Signal Processing, vol. 22, no. 5, pp.
431–439.

[47] Cogranne, R. & Retraint, F.(2013). A new tomography model for almost
optimal detection of anomalies. Image Processing (ICIP), Proc. of 20th
IEEE International Conference on, pp. 1461–1465.

[48] Choi, J. & Kim, C.(2012). Unsupervised detection of surface defects: A
two-step approach. 19th IEEE International Conference on Image Pro-
cessing, Orlando, FL, pp. 1037-1040.

[49] Tsai, D. M., & al,.(2012). A fast regularity measure for surface defect
detection. Machine Vision and Applications, vol. 23, no. 5,pp. 869–886.

[50] Bulnes, F. G., & al,.(2016). A Non-Invasive Technique for Online Defect
Detection on Steel Strip Surfaces. Journal of Nondestructive Evaluation,
vol. 35, no. 4, pp. 54.

[51] Basseville, M. & Nikiforov, I.(2002). Fault isolation for diagnosis: Nui-
sance rejection and multiple hypotheses testing. Annual Reviews in Con-
trol, vol. 26, no. 2, pp 189–202.

[52] Shukla, R., & al,.(2005). Rate-distortion optimized tree-structured com-
pression algorithms for piecewise polynomial images. IEEE Transactions
on Image Processing, vol. 14, no. 3, pp. 343–359.

[53] Kazinnik, R., Dekel, S. & Dyn, N.(2007). Low Bit-Rate Image Coding
Using Adaptive Geometric Piecewise Polynomial Approximation. IEEE
Transactions on Image Processing, vol. 16, no. 9, pp. 2225–2233.

[54] Hanzaei, S.H., Afshar, & A., Barazandeh, F.(2017). Automatic detection
and classification of the ceramic tiles’ surface defects, Pattern Recogni-
tion, vol. 66, pp. 174–189.

[55] Tosic, I. & Frossard, A.(2012). Dictionary Learning. IEEE Signal Pro-
cessing Magazine, vol. 28, no. 2, pp. 27–38.

[56] Wang, Y., Xu, C., Xu, C., & Tao, D.(2017). Beyond RPCA: Flattening

Complex Noise in the Frequency Domain. AAAI Conference on Artificial
Intelligence.

[57] Zhao, Q., Meng, D., Xu, Z., Zuo, W. and Zhang, L.(2014). Robust princi-
pal component analysis with complex noise. International Conference on
Machine Learning, pp. 55–63.


	Introduction
	State of the Art
	Contribution of This Work
	Organization of This Paper

	Problem Formulation
	Adaptive Parametric Linear Model 
	Background Model
	Noise Model

	Statistical detection of anomalies
	Wheel Inspection Characteristics
	Region of Interest Extraction
	Data Preparation

	Experiments and results
	Common core of all experiments
	Improvement of Detection Accuracy Due to the Model Adaptivity
	Improvement of Detection Accuracy Due to Heteroscedastic Noise Model
	Comparison Between Empirical and Theoretically Established Results
	Comparison With the State-of-the-art
	Real defects

	Conclusion

