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This paper addresses the case of automatic controlled systemwhich deteriorates during its operation because of components’ wear or
deterioration. Depending on its specific closed-loop structure, the controlled system has the ability to compensate for disturbances
affecting the actuators which can remain partially hidden. The deterioration modeling and the Remaining Useful Lifetime (RUL)
estimation for such closed-loop dynamic system have not been addressed extensively. In this paper, we consider a controlled system
with Proportional-Integral-Derivative controller. It is assumed that the actuator is subject to shocks that occur randomly in time. An
integrated model is proposed to jointly describe the state of the controlled process and the actuator deterioration. Only the output
of the controlled system is available to assess its health condition. By considering a Piecewise Deterministic Markov Process, the
RUL of the system can be estimated by a two-step approach. In the first step referred as the “Diagnosis” step, the system state is
estimated online from the available monitoring observations by using a particle filtering method. In the second step referred as the
“Prognosis” step, the RUL is estimated as a conditional reliability byMonte Carlo simulation. To illustrate the approach, a simulated
tank level control system is used.

1. Introduction

Due to increasing requirements on durability, reliability,
and dependability of industrial systems, intensive research
activity onmaintenancemodeling has been developed during
the last decades. Based on the available information about
the current system state provided by health monitoring
process, different condition-based or predictive maintenance
decision rules can be proposed so as to optimize the decision-
making process, that is, to prevent or correct failures or
faults [1, 2]. In condition-based maintenance framework, a
deterioration indicator that correctly describes the dynamic
of the failure process is required. Usually this efficient
indicator can be constructed from collected information on
various deterioration-related monitoring parameters, such
as vibration, temperature, lubricating oil, and noise levels.
Many research efforts have been devoted to deterioration
modeling with increasingly sophisticated approaches which
consider different deterioration processes and also dynamic
environments [3–5]. However, the need of continuous

monitoring in cases of dynamic operating condition may
increase the systems costs when expensive monitoring
devices are required [6, 7]. In this way, a predictive mainte-
nance policy that schedulesmaintenance actions according to
a prognosis activity without specific additional sensors seems
to be an appropriate approach [8, 9].

Over the last twodecades, numerous prognosis approach-
es have been developed. According to [6] they can be clas-
sified into three main categories: statistical approaches, arti-
ficial intelligence approaches, and model-based approaches.
The assessment of the Remaining Useful Lifetime (RUL)
is one of important tasks in Prognosis. Many studies con-
centrate on the RUL estimation of systems, subsystems,
or components, for example, for lithium-ion batteries [10],
rotatingmachinery [11, 12], or car suspension system [13] (see
reviews by [14, 15]).

In the field of dependability of automated systems and
processes, another research aspect concerns fault-tolerant
control (FTC) strategies which give the feedback control
system the ability to overcome faults [16]. The key objective
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Figure 1: General block diagram of a feedback control system with notations.

of FTC system design may not offer optimal performance
in a strict sense for normal operation but can generally
mitigate effects of system components failures. For instance,
in [17] a scheme for integrated fault detection, diagnosis,
and reconfigurable control systems against actuator faults is
proposed. The FTC strategies work with the fact that system
components can fail by fortuitous causes. In effect, when a
fault is detected, the reconfigurable controller and the system
command input will be designed automatically to achieve
desired performance [18]. However, the dynamic evolution
of the deterioration which is the origin of these faults has
not been worthy of attention. In fact, because of components’
wear or deterioration the control system performance can
be gradually decreasing during operation. In such a case,
the information provided by the prognosis process about the
health of components and/or the system RUL could be useful
to allow modifications of the control actions to continue to
achieve the control objectives [19, 20]. In [21] the behavior
of the considered system is described by a multiple time
scale model which was made up of two parts: a fast dynamic
behavior part and a slow dynamic behavior one. The slow
dynamic behavior part whose structure is known a priori
describes the evolution of the damage state. RUL estimation
implies identifying parameters of the structure of the slow
dynamic behavior part. Nevertheless, according to the best
of our knowledge the stochastic deterioration modeling and
RUL estimation process for closed-loop dynamic systems
such as feedback control systems have not been addressed
extensively.

The main aim of this paper is to propose a probabilistic
framework to assess the RUL of feedback control systems
with stochastically deteriorating actuator and random envi-
ronment. In the conventional closed-loop control system, the
measure of the process output is fed back to the controller in
order to generate appropriate control actions on the process.
The objective of such systems is to maintain the process
output within a desired range defined by a desired set-point.
In this paper, the system output measurement is considered
as the only available data for health assessment reflecting
the deterioration phenomenon. The focus is put on the loss
of effectiveness of the actuator. Indeed, the actuators are
ones of the most important parts of such systems because
they represent the physical link between the control law

and the controlled process. In particular, the deterioration of
actuators in a closed-loop control system can lead to poor
performance and, in extreme cases, loss of controllability. In
order to describe the interaction between the deterministic
behavior of the feedback control system and the stochastic
deterioration process, the whole deteriorating closed-loop
system is described as a Piecewise Deterministic Markov
Process. In this framework, the distribution of the RUL of
the system is computed by using a two-step stochastic model-
based technique; see [22].

The remainder of this paper is organized as follows.
Section 2 is devoted to the description of the system charac-
teristics and the assumptions about the conditionmonitoring
process which depends on the stochastic evolution of the
set-point. Section 3 describes the approach for computing
the Remaining Useful Lifetime which is relevant to system
state estimation. To illustrate the methodology, a specific
case study is introduced in Section 4. Some numerical
results are also discussed here. In this section, the perfor-
mance of the proposed methodology is compared with a
standard cumulative damage model in which the deteri-
oration process is perfectly monitored. Finally, conclusion
drawn from this work and possible ways for further studies
are given.

2. General Modeling Framework

This section describes the characteristics of a deteriorat-
ing feedback control system whose actuator stochastically
degrades through time and the assumptions about the con-
dition monitoring process which relates to the set-point
evolution.

2.1. Feedback Control System Structure. In practical control
applications, the objective of maintaining the output of a
specific process within a desired range is usually achieved by
using closed-loop control (see Figure 1 for a general scheme
of a feedback control system). Sensor gives measurements
of process output that are used by the controller in order to
calculate the appropriate applied command on the actuator in
such a way that reduces the difference between the measured
value and the desired set-point to zero or to a small deviation.
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We consider a process whose evolution of the states
(𝑥
𝑡
)
𝑡∈R
+

can be described by the differential equation:

�̇� (𝑡) = f (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝜃) , (1)

where 𝑥(𝑡) ∈ R𝑛𝑥 is the vector of the process states, 𝑢(𝑡) ∈ R

denotes control variable, 𝜃 is the vector of process parameters
which is typically considered to be constant in practice, and
f(⋅) is the process dynamic function which can be nonlinear.

Despite sophisticated filter structures, noise in the mea-
surement process is usually an unavoidable problem. The
measurements of outputs (𝑦

𝑡
)
𝑡∈R
+

are then related to the state
variables by

𝑦 (𝑡) = h (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝜃) + 𝜖 (𝑡) , (2)

where h(⋅) is the measurement function which defines the
outputs 𝑦(𝑡) ∈ R𝑛𝑦 . It is assumed that measurement noises
(𝜖
𝑡
)
𝑡∈R
+

are independent random variables with a probability
density, not necessarily Gaussian, independent of the process
states (𝑥

𝑡
)
𝑡∈R
+

.
This work focuses on the use of the process output in a

prognosis purpose.The possible impact of the control law on
the remaining useful life of the system is not investigated in
this work.Therefore, the generic usual Proportional-Integral-
Derivative (PID) controller structure is used. Due to their
simplicity and performance, PID controllers are widely used
in industrial applications [23]. Defining 𝑢

𝑐(𝑡) as the controller
output at time 𝑡, the standard form of the PID controller is
given by

𝑢
𝑐
(𝑡) = 𝐾

𝑃
[𝑒 (𝑡) +

1

𝑇
𝐼

∫
𝑡

0

𝑒 (𝜏) d𝜏 + 𝑇
𝐷

d𝑒 (𝑡)

d𝑡
] , (3)

where 𝑒(𝑡) is the error signal defined as 𝑒(𝑡) = 𝑦
ref(𝑡) − 𝑦(𝑡)

with 𝑦ref(𝑡) as the desired set-point (the reference output),
𝐾
𝑃
is the proportional gain, 𝑇

𝐼
is the integral time, and 𝑇

𝐷

is the derivative time of the PID controller. The adjustment
of these three parameters for an optimal system response is
extensively studied in control system design [23].

The actuating signal 𝑢
𝑐(𝑡) is then used by the actuator to

affect the control action on the process. Actuators are physical
devices, for example, control valves, pumps, and other control
switches. The output of actuator which is the real control
variable is defined as a function g depending on the required
value 𝑢

𝑐(𝑡) of the controller and on the actual capacity of
actuator 𝐶(𝑡). g is a decreasing function with respect to 𝐶(𝑡):

𝑢 (𝑡) = g (𝑢
𝑐
(𝑡) , 𝐶 (𝑡)) . (4)

At the initial stage of working, the actuator operates
perfectly; that is, 𝐶(𝑡) = 𝑐

0
, where 𝑐

0
is the initial nominal

capacity of actuator. However, due to the natural ageing
or wear of the mechanical and/or electrical parts of the
actuator influenced by nondesired effects of the operating
condition, the actuator’s effectiveness 𝐶(𝑡) decreases in time
and subsequently reduces the control system performance.
For instance in a piston pump, wear and corrosion during
the operating period lead to gradually enlarging the clearance
between valve ball and seat, which will result in decreasing
flow rate [24].

2.2. Actuator Deterioration. As mentioned above, the actu-
ator deterioration process is considered as a source of per-
formance deterioration in physical system. If D(𝑡) describes
the accumulated deterioration of the actuator up to time 𝑡 (in
capacity unit), the capacity of the actuator at time 𝑡 before its
failure can be expressed as

𝐶 (𝑡) = 𝑐
0

− D (𝑡) . (5)

As can be seen in the literature, the occurrence of partial
loss of effectiveness on an actuator is shown as a discrete
phenomenon in time [25, 26]. The loss of effectiveness
of the actuator is considered to result from the dynamic
evolution of the deterioration process. Such deterioration
models known as shock deterioration models have been
widely used and the process of shocks’ occurrence times is
classically modeled by Poisson processes (see [27, 28]). In
this work, the actuator is therefore considered to be subject
to a discrete-time deterioration process. It means that the
occurrence of deterioration is driven by a mechanism in a
specified time interval which leads to an increment of damage
as described in [29].More precisely the isolated points in time
corresponding to discrete wear amounts which accumulate
gradually are supposed to occur according to a homogeneous
Poisson process with intensity 𝜆. The amounts of damage per
shock are independently and identically distributed (i.i.d.).
Let 𝑁(𝑡) denote the total number of shocks up to time 𝑡 ≥ 0.
Then the accumulated deterioration of the actuator at time 𝑡

is

D (𝑡) =

𝑁(𝑡)

∑
𝑗=0

𝑊
𝑗

(𝑁 (𝑡) = 0, 1, 2, . . .) , (6)

where 𝑊
𝑗
denotes the damage produced at the 𝑗th shock

and 𝑊
0

= 0. Namely, {D(𝑡), 𝑡 ≥ 0} is a compound Poisson
process.

An example of such model can be found in [22] where
the leak size of pneumatic valve in the BLEED air system
is modeled by a random jump process due to historical
maintenance records and experts opinion. In [30] the above
model is applied to the life of a storage battery whose capacity
decreases with time andwith each charge and discharge, until
it becomes useless. In [29] a compound Poisson process is
considered for leakage current modeling of ultra thin gate
oxides in nanotechnology. In this work, the system operating
mode which defines the evolution of set-point is supposed to
be unchanged.That is the reason that a homogeneous Poisson
process is well suited tomodel the discrete shock instants (see
[31] for a more general case where the impact of a random
change operating mode is taken into account).

Under this modeling assumption, the deterioration
impacts the actuator only at discrete times. In case where
an actuator has a monotone gradual deterioration behavior,
other processes should be considered, for example, the
homogeneousGammaprocess which can be thought of as the
accumulation of an infinite number of small shocks [4].

2.3. Set-Point Evolution. According to the demand, for exam-
ple, of the production process, the desired set-point may
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change through time. For example, in a chemical process
control, the controlled variables (e.g., temperature, flow
rate, etc.) have to track the time-varying trajectories that
depend on the production phases. As another example let
us consider a water supply system for a building. In this
case the operation of water pump depends on the use of
customers with peaks and off-peak periods during a day.
The water demand on the morning and the night can be
different to other periods in a day and from one day to the
other. Hence, the evolution of set-point should be modeled
by a stochastic process that allows to take into account the
variability of the production plan on a large time horizon.
Moreover, the consideration of a stochastic process for set-
point evolution gives the ability to take into account the
impact of variable environmental conditions (traditionally
modeled as random) affecting the predetermined set-point.
Take the cement production process as an example. One step
of this process consists in mixing clinker with gypsum and
other additives with desired proportions.This is realized with
the help of the weight belt conveyors which transport the
materials from the storages to the cement mill. In practice,
clinker is sensitive to atmospheric conditions (e.g., it can
easily clot with the humidity). Therefore in order to ensure
the desired quality for cement product, the set-points of the
velocities of the gypsum and additives conveyors have to be
adapted to the real quantity of clinker on the clinker conveyor
which is random [32].

Hereafter, the random evolution of the set-point is
described by a time-homogeneousMarkov chain with a finite
state space 𝑟set = {𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑚
} describing, for example,

the 𝑚 production rates. Let 𝑌ref
𝑡

be the set-point at time
𝑡. The evolution of the stochastic process {𝑌ref

𝑡
, 𝑡 ≥ 0} is

characterized by the transition probability matrix 𝑃 with the
(𝑖, 𝑗)th element equal to

𝑝
𝑖𝑗

(𝑡) = P (𝑌
ref
𝑠+𝑡

= 𝑟
𝑗

| 𝑌
ref
𝑠

= 𝑟
𝑖
) . (7)

In Figure 2 we can see an illustrative example of evolutive
set-point with a peak of demand at 𝑇

2
and another one at

𝑇
5
. The nominal rate activity can be observed, for example,

between 𝑇
1
and 𝑇

2
whereas two weak activity periods occur,

for example, before 𝑇
1
.

In practical situations, the production/process rate is well
known in a near future. This is why we suppose that the
change dates to change the production rates are directly
observed without errors. In this work, only one set of PID
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controller parameters is chosen for all known values of set-
point 𝑟set.

2.4. Condition Monitoring Process. The controlled system
output is considered here as the only information available for
the actuator health assessment. Moreover, this information is
available only at a sequence of inspection times following a
change instant of set-point. In fact, such a change provides the
opportunity to characterize the dynamics of the controlled
system. It is known that the response of system with a
change of set-point has two periods: transient and steady-
state ones. The former takes place in the short period of time
immediately after the change, whereas the latter is usually
defined to begin when the output entered and remained
within a specified error band (2% or 5% of the change size
of set-point). A significant part of the dynamic behavior of
the system is shown in the transient period. For this reason,
we take only observations of system output in this period.The
inspection procedure can be illustrated by Figure 3.

After a change of set-point, a finite number of the system
output’s observations could be recorded every time interval
Δ𝑡inspec. The observation times corresponding to the 𝑖th
change of set-point are denoted as 𝑇1

𝑖
, 𝑇2
𝑖
, . . . , 𝑇

𝑁
𝑖

𝑖
. The total

number of observations 𝑁
𝑖
depends on the time duration

between two changes of set-point but 𝑁
𝑖

≤ 𝑛max, ∀𝑖. The
health information at these instants is then modeled by the
random variables 𝑌1

𝑖
, 𝑌2
𝑖
, . . . , 𝑌

𝑁
𝑖

𝑖
defined from (2) as

𝑌
𝑗

𝑖
= h (𝑇

𝑗

𝑖
, 𝑥 (𝑇
𝑗

𝑖
) , 𝑢 (𝑇

𝑗

𝑖
) , 𝜃) + 𝜖 (𝑇

𝑗

𝑖
) . (8)

Let us introduce the time of prediction 𝑇prog > 0 which
is set equal to the current time or the date at which the
last observation has been recorded. It is the time at which
the system health can be estimated given all the collected
knowledge and a residual lifetime can be derived. In the
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sequel and for the sake of the paper clarity the reference to
the set-point change will be removed as far as possible. As
a consequence if 𝑛 is the total number of observations until
𝑇prog, the observation dates and corresponding system output
will be, respectively, denoted as 0 < 𝑇

1
< ⋅ ⋅ ⋅ < 𝑇

𝑛
= 𝑇prog

and 𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑛
. These sequences are used here as the only

available information for the prognosis purpose.

3. Remaining Useful Lifetime
Assessment Methodology

Due to interaction between stochastic deterioration and
deterministic dynamics of the system, the whole integrated
closed-loop deteriorating system can be modeled by a Piece-
wise Deterministic Markov Process (PDMP). Such a class of
models has been first introduced by [33]. PDMP is used to
model fatigue growth in [34] and corrosion in [35]. Between
two successive shocks reducing the actuator capacity, the
response of the closed-loop system is described by differential
equationswhich combine the process dynamic characteristics
and PID controller behaviors. The randomness impacts the
system and intersects its trajectories only at the random dis-
crete times of shock according to the actuator deterioration
model description. Interested readers can refer to [22, 33, 36]
for a rigorous mathematical definition of a PDMP.

Roughly speaking, the characterization of a PDMP
requires three basic elements: a probability law 𝑑𝐹

𝑧
which

represents the law of the time 𝑇
𝑖+1

− 𝑇
𝑖
before the next jump

given the position 𝑍
𝑖

= 𝑧, a Markovian kernel 𝑄(𝑧; 𝑑𝑢)

which represents the probability law driving process position
after a jump from position 𝑧, and a flow 𝜓 describing the
deterministic trajectories between the jumps.

3.1. Two-Step Technique for RUL Assessment. According to
the previous description of system and its deterioration
process the whole behavior of the deteriorating closed-loop
system at time 𝑡 can be resumed by the extended random
vector 𝑍

𝑡
such that

𝑍
𝑡

= (
𝑥
𝑡

𝐶
𝑡

) , (9)

where 𝑥
𝑡
is the state variables of the controlled process and𝐶

𝑡

is the actual capacity variable related to the deterioration of
the actuator. Note that in the paper modeling framework, the
vector𝑍

𝑡
defines a time-homogeneousMarkov process given

that the set-point is a Markovian process. More generally,
for example, when the set-point depends deterministically on
time, the time 𝑡 can be included explicitly as a component of
𝑍
𝑡
for the process to be homogeneous in time [22]. Indeed, if

a process 𝑍 is Markovian but non-time-homogeneous, then
𝑍 = (𝑍

𝑡
, 𝑡) is a time-homogeneous Markov process [37].

The considered process (𝑍
𝑡
)
𝑡∈R
+

is a PDMPwhich is perfectly
defined by

(i) the probability law 𝑑𝐹
𝑧
which is related to the

intensity 𝜆 of the Poisson process; that is, 𝑑𝐹
𝑧
(V) =

𝜆 exp(−𝜆V)𝑑V,
(ii) the Markovian kernel 𝑄(𝑧; 𝑑𝑢) which is the den-

sity of the probability law that has been chosen to

describe the amounts of damage 𝑊
𝑖
and which does

not depend on 𝑧 in this paper without any loss of
generality,

(iii) the function 𝜓(𝑧, 𝑡) which characterizes the solutions
of the ordinary differential equation (1).

The kernel of the Markov renewal process is given by
𝑁(𝑧, 𝑑𝑢, 𝑑V) = 𝑑𝐹

𝑧
(V)𝑄(𝑧; 𝑑𝑢).

In the context of the feedback control system, the system
failure zoneF is gathering all the unacceptable deterioration
states of the actuator. While in a “failed” state the system can
still work, but it is unable to fulfill its requirements anymore.
The objectives of the control system are not achieved. Practi-
cally, the actual capacity of the actuator has to be greater than
a minimal capacity level related to the objectives of control
system design.TheRemainingUseful Lifetime at time 𝑡 RUL

𝑡

is thus defined as the hitting time of the failure zoneF in the
process state space; that is

RUL
𝑡

= inf (𝑠 ≥ 𝑡, 𝑍
𝑠

∈ F) − 𝑡. (10)

As stated in [22] the modeling framework of PDMP
ensures that the distribution of the system RUL at time 𝑇prog
given the online monitoring information up to time 𝑇prog can
be written as

P (RUL
𝑇prog

> 𝑠 | 𝑌
1

= 𝑦
1
, . . . , 𝑌

𝑛
= 𝑦
𝑛
)

= ∫ 𝑅
𝑧

(𝑠) 𝜇
𝑦
1
,...,𝑦
𝑛

(𝑑𝑧) ,

(11)

where

(i) 𝜇
𝑦
1
,...,𝑦
𝑛

(𝑑𝑧) is the probability law of the system state
at time 𝑇prog regarding the available observations
𝑦
1
, . . . , 𝑦

𝑛
:

𝜇
𝑦
1
,...,𝑦
𝑛

= L (𝑍
𝑇prog

| 𝑌
1

= 𝑦
1
, . . . , 𝑌

𝑛
= 𝑦
𝑛
) ; (12)

(ii) 𝑅
𝑧
(𝑠) is the reliability of the system at time 𝑠 knowing

that the initial state value is 𝑧:

𝑅
𝑧

(𝑠) = P (𝑍
𝑢

∉ F ∀𝑢 ≤ 𝑠 | 𝑍
0

= 𝑧) . (13)

The probability density function (pdf) or the mean value
of RUL

𝑇prog
can be derived from (11). The two-step technique

detailed in the next paragraphs consists in firstly estimating
𝜇
𝑦
1
,...,𝑦
𝑛

and secondly the conditional reliability knowing
𝑍
𝑇prog

. Figure 4 illustrates the proposed methodology.

3.2. Step 1: Particle Filtering State Estimation. As mentioned
previously the system evolution is modeled using a PDMP
𝑍 = (𝑍

𝑡
)
𝑡∈R
+

.The sequence,𝑍
𝑇
0:𝑘

= {𝑍
𝑇
𝑖

, 𝑖 = 0, . . . , 𝑘}, 𝑘 ≤ 𝑛,
where 𝑍

𝑇
0

is the initial state of the system, is not observed
directly but solely and partially through observations 𝑌

1:𝑘
=

{𝑌
𝑖
, 𝑖 = 1, . . . , 𝑘} as described in Section 2.4. Hence the

first objective is to make inferences on the states 𝑍
𝑇
0:𝑘

from
the measured values 𝑦

1:𝑘
= 𝑦
1
, . . . , 𝑦

𝑘
of the observation

process 𝑌
1:𝑘
. More specifically, the main task is to estimate
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Figure 4: Illustration of the prognosis concept.

the conditional density, 𝑝(𝑧
𝑇
𝑘

| 𝑦
1:𝑘

), which represents the
probability law of the state at time 𝑇

𝑘
given the observations

available up to inspection time𝑇
𝑘
. A particle filteringmethod

is considered which allows recursive updates of the density as
new observations arrive. First the recursive Bayesian filter is
defined by

𝑝 (𝑧
𝑇
𝑘

| 𝑦
1:𝑘−1

) = ∫ 𝑝 (𝑧
𝑇
𝑘

| 𝑧
𝑇
𝑘−1

) 𝑝 (𝑧
𝑇
𝑘−1

| 𝑦
1:𝑘−1

) d𝑧
𝑇
𝑘−1

,

𝑝 (𝑧
𝑇
𝑘

| 𝑦
1:𝑘

) =
𝑝 (𝑦
𝑘

| 𝑧
𝑇
𝑘

) 𝑝 (𝑧
𝑇
𝑘

| 𝑦
1:𝑘−1

)

𝑝 (𝑦
𝑘

| 𝑦
1:𝑘−1

)
,

(14)

where the quantity 𝑝(𝑦
𝑘

| 𝑦
1:𝑘−1

) is given by

𝑝 (𝑦
𝑘

| 𝑦
1:𝑘−1

) = ∫ 𝑝 (𝑦
𝑘

| 𝑧
𝑇
𝑘

) 𝑝 (𝑧
𝑇
𝑘

| 𝑦
1:𝑘−1

) d𝑧
𝑇
𝑘

. (15)

The difficulty to implement the recursive Bayesian filter
is that the integrals calculations are intractable.Thus, particle
filtering is used here to allow for numerical computation of
the filtering density. It is a sequential Monte Carlo method
particularly useful for optimal estimation and prediction

problems in nonlinear non-Gaussian processes [38]. The
key idea is to approximate the targeted filtering distribution
𝑝(𝑧
𝑇
𝑘

| 𝑦
1:𝑘

) by a cloud of 𝑁
𝑠
i.i.d. random samples

called particles {𝑧
(𝑖)

𝑇
𝑘

, 𝑖 = 1, . . . , 𝑁
𝑠
} with associated weights

{𝑤
(𝑖)

𝑇
𝑘

, 𝑖 = 1, . . . , 𝑁
𝑠
}, which satisfy ∑

𝑁
𝑠

𝑖=1
𝑤
(𝑖)

𝑇
𝑘

= 1. The target
distribution at time 𝑇

𝑘
can be approximated by

𝑝 (𝑧
𝑇
𝑘

| 𝑦
1:𝑘

) ≈ 𝑝 (𝑧
𝑇
𝑘

| 𝑦
1:𝑘

) =

𝑁
𝑠

∑
𝑖=1

𝑤
(𝑖)

𝑇
𝑘

𝛿
𝑧
(𝑖)

𝑇
𝑘

(d𝑧
𝑇
𝑘

) , (16)

where 𝛿
𝑧
(𝑖)

𝑇
𝑘

(⋅) is the Dirac delta mass located in 𝑧
(𝑖)

𝑇
𝑘

.
The used particle filter is similar to the Generic Particle

Filter in [38] with deterministic resampling method because
it seems to be a computationally cheaper algorithm [39].
Indeed, resampling is used to avoid the problem of degen-
eracy of the algorithm, that is, avoiding the situation that all
but one of the importance weights are close to zero [40]. The
algorithm uses the prior distribution 𝑝(𝑧

𝑇
𝑘

| 𝑧
(𝑖)

𝑇
𝑘−1

) derived
from (1) to (7) as the importance function.

Therefore, the real-time state estimation procedure, given
the sequence of measurement 𝑦

1:𝑘
, can be resumed by the

algorithm in Algorithm 1.
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Initialization: ∀𝑖 = 1, . . . , 𝑁
𝑠
.

Draw particle 𝑧
(𝑖)

𝑇
0

according to the initial condition of system
Assign corresponding weight 𝑤

(𝑖)

𝑇
0

= 1/𝑁
𝑠

At step k (corresponding to time 𝑇
𝑘
): Given {𝑧

(𝑖)

𝑇
𝑘−1

, 𝑤
(𝑖)

𝑇
𝑘−1

}
𝑁
𝑠

𝑖=1
, do

(a) Importance sampling
Based on the system description (derived from (1) to (7)), draw particles �̃�

(𝑖)

𝑇
𝑘

∼ 𝑝(𝑧
𝑇
𝑘

| 𝑧
(𝑖)

𝑇
𝑘−1

)

(b) Weight update
Based on the likelihoods of the observations 𝑦

𝑘
collected (Eq. (8)), assign weights 𝑤

(𝑖)

𝑇
𝑘

= 𝑤
(𝑖)

𝑇
𝑘−1

𝑝(𝑦
𝑘

| �̃�
(𝑖)

𝑇
𝑘

)

(c) Weight normalisation

𝑤
(𝑖)

𝑇
𝑘

=
𝑤
(𝑖)

𝑇
𝑘

∑
𝑁
𝑠

𝑖=1
𝑤
(𝑖)

𝑇
𝑘

(d) Re-sampling decision
If �̂�eff = 1/ ∑

𝑁
𝑠

𝑖=1
(𝑤
(𝑖)

𝑇
𝑘

)
2

< 𝑁thresh then perform deterministic re-sampling: {�̃�(𝑖)
𝑇
𝑘

, 𝑤
(𝑖)

𝑇
𝑘

}
𝑁
𝑠

𝑖=1
⇒ {𝑧
(𝑖)

𝑇
𝑘

, 1/𝑁
𝑠
}
𝑁
𝑠

𝑖=1

(e) Distribution
𝑝(𝑧
𝑇
𝑘

| 𝑦
1:𝑘

) ≈ ∑
𝑁
𝑠

𝑖=1
𝑤
(𝑖)

𝑇
𝑘

𝛿
𝑧
(𝑖)

𝑇
𝑘

(𝑑𝑧
𝑇
𝑘

)

Repeat till the prognosis instant 𝑇prog is reached

Algorithm 1: Generic particle filter for system state estimation.

Given {𝑧
(𝑖)

𝑇
𝑛

, 𝑤
(𝑖)

𝑇
𝑛

}
𝑁
𝑠

𝑖=1
, 𝑁depart number of departure points, 𝑁traj number of simulation trajectories for each point

For 𝑗 = 1, . . . , 𝑁depart do
(i) Generate uniform sample: 𝑢

𝑗
∼ 𝑈(0, 1)

(ii) Select depart point:
𝑧selected
𝑗

= 𝑧
(𝑘)

𝑇
𝑛

with ∑
𝑘−1

𝑙=1
𝑤
(𝑙)

𝑇
𝑛

≤ 𝑢
𝑗

< ∑
𝑘

𝑙=1
𝑤
(𝑙)

𝑇
𝑛

(iii) For 𝑘 = 1, . . . , 𝑁traj do
Simulate the trajectories according to the system description (derived from (1) to (7))
End

End
Obtain the empirical distribution of RUL

Algorithm 2: RUL estimation.

3.3. Step 2: RUL Estimation. The second step of the method-
ology considered in this paper for the RUL computation
requires the estimation of the system reliability starting from
the prognosis instant 𝑇prog and knowing the approximated
pdf of the system state at 𝑇prog as given by (16).

Actually, the reliability is computed with the classical
Monte Carlo method. It means that the simulation of tra-
jectories of system until its failure is required. The departure
point of each trajectory is then randomly selected from the
obtained particle set at time𝑇prog. Each particle is propagated
forward to the failure zone by using the future evolution of
set-point which is described in Section 2.3. The histogram
of the RUL is obtained straightforwardly. The mean value or
quantiles of the RUL can also be derived. The procedure is
illustrated by Algorithm 2.

4. Case Study: A Double-Tank Level
Control System

In the previous section, a methodology to compute the
conditional pdf of the RUL of a closed-loop dynamic system

was described.Here, it is illustrated on awell-known feedback
control system: a double-tank level control system.

4.1. Description of the Case Study. Consider a double-tank
level system with cross-sectional area of the first tank 𝑆

1
and

the second one 𝑆
2
. Water or other incompressible fluid (i.e.,

themass density of fluid 𝜌 is constant) is pumped into the first
tank at the top by pumpmotor drives.Then, the outflow from
the first tank feeds the second tank. The water level of tank 2
is measured by a level measurement sensor and controlled by
adjusting the pump motor control input which is calculated
by a PID controller. The overall tank level control system is
shown in Figure 5.

In order to consider the real response of pumpmotor, the
relation between the inlet flow rate 𝑞in and the pump motor
control input 𝑢

𝑐
is represented as a first order system [41]:

d𝑞in
d𝑡

= −
1

𝜏
𝑎

𝑞in +
𝐾
𝑎

𝜏
𝑎

𝑢
𝑐
, (17)

where 𝜏
𝑎
is the time constant of pump motor and 𝐾

𝑎
is the

servo amplifier gain (with the initial gain 𝐾
𝑎init

). The pump



8 Mathematical Problems in Engineering

Set-point DriverPID controller

Level measurement sensor

Tank 1

Tank 2

Degradation
process

S1
V1h1

h2
V2S2

uc

qin

q2,out

q1,out

−

Figure 5: A double-tank level control system.

saturates at a maximum input 𝑢max and it cannot draw water
from the tank, so 𝑢

𝑐
∈ [0, 𝑢max].

The fluid leaves out at the bottom of each tank through
valves with the flow rates according to the Torricelli rule:

𝑞
𝑗,out = 𝐾V

𝑗

√2𝑔ℎ
𝑗
, 𝑗 = 1, 2, (18)

where ℎ
𝑗
is level of tank 𝑗, 𝑔 is the acceleration of gravity, and

𝐾V
𝑗

is the specified parameter of the valve 𝑗.
Using the mass balance equation, the process can be

described by the following equations:

dℎ
1

(𝑡)

d𝑡
=

1

𝑆
1

𝑞in −
𝐾V1

𝑆
1

√2𝑔ℎ
1

(𝑡),

dℎ
2

(𝑡)

d𝑡
=

𝐾V1

𝑆
1

√2𝑔ℎ
1

(𝑡) −
𝐾V2

𝑆
2

√2𝑔ℎ
2

(𝑡).

(19)

The control objective of the system is to adjust the level of
tank 2 according to the set-point evolution. To have simple
and comprehensible case study, we suppose that the set-
point admits only two values 𝑟

1
and 𝑟

2
with 𝑟

1
< 𝑟
2
. The

sojourn times in the different values of system set-point
are characterized by a continuous-time Markov chain whose
transition rate matrix is

𝑃 = (
−𝛼
1

𝛼
1

𝛼
2

−𝛼
2

) , (20)

where 𝛼
1
and 𝛼

2
describe transition rate of set-point and the

mean sojourn time value 𝑟
𝑖
is equal to 1/𝛼

𝑖
.

Due to deterioration of the pump, its capacity𝐾
𝑎
stochas-

tically decreases. Each time 𝜉
𝑖
a shock occurs according to a

Poisson process with intensity 𝜆, the capacity of pump 𝐶(𝑡) =

𝐾
𝑎
(𝑡) = 𝐾

𝑎init
−D(𝑡) decreases by a quantity𝑊

𝑖
which follows

a uniform distribution on [0; Δ].
Under all these considerations, the behavior of water tank

level control system can be summed up using the process𝑍 =

(𝑍
𝑡
)
𝑡∈R
+

, where 𝑍
𝑡
is given by

𝑍
𝑡

= (

𝐾
𝑎

(𝑡)

ℎ
1

(𝑡)

ℎ
2

(𝑡)

) . (21)

The current state of the system at time 𝑡 is then a three-
component vector 𝑍

𝑡
, which includes the water levels of both

tanks and the current capacity of the pump. Note that only
the water level ℎ

2
(𝑡) of tank 2 is observed.

According to (17) and (19), the steady states are obtained
at instant 𝑡ss if

𝑢
𝑐
(𝑡ss) =

𝑆
1

𝑆
2

𝐾V
2

𝐾
𝑎

(𝑡ss)
√2𝑔ℎ

2
(𝑡ss). (22)

Since 𝑢
𝑐
(𝑡ss) ≤ 𝑢max, then

𝐾
𝑎

(𝑡ss) ≥
𝑆
1

𝑆
2

𝐾V
2

𝑢max
√2𝑔ℎ

2
(𝑡ss). (23)

This condition shows that the required actuator capacity
depends on the evolution of set-point process. Indeed, if the
set-point takes a small value (i.e., 𝑟

1
), not much controlled

actions are needed. However, in order to keep a desired level
of safety for the system, especially in the case of a random
time-varying set-point, and also to simplify the definition
of the zone of failure, the failure threshold is defined as
the minimal capacity of actuator which gives the system’s
ability to handle all possible values of set-point. The minimal
capacity can be defined in the control system design phase. In
this case of study, this accepted value is defined as

𝐾
𝑎min

=
𝑆
1

𝑆
2

𝐾V
2

𝑢max
√2𝑔max

𝑖

𝑟
𝑖
=

𝑆
1

𝑆
2

𝐾V
2

𝑢max
√2𝑔𝑟
2
. (24)

Thus, the RUL of the system is the remaining time before
the process 𝑍 enters in the failure zone which is defined as

𝐾
𝑎

(𝑡) ≤ 𝐾
𝑎min

. (25)

As mentioned above, the system response (the water
level of the tank 2) is considered as the only available
health information of the system. Indeed, the water level
measurement is recorded for prognosis purposes if a change
of the set-point is detected. Only the information of the
transient response is used because it is more informative than
the steady-state response.

4.2. Numerical Illustrations. In order to numerically imple-
ment the double-tank level control system, the continuous
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processmodel (19) and the actuatormodel (17) are discretized
through the forward Euler scheme (with time step Δ𝑡). For
PID implementation, the velocity algorithm [42] is used.
Therefore, the behavior of control system can be resumed by

𝑡
𝑘

= 𝑡
𝑘−1

+ Δ𝑡,

𝑦
𝑘

= ℎ
2
𝑘

+ 𝜖
𝑘
,

𝑦
ref
𝑘

∼ 𝑃 (𝑟
𝑘

| 𝑟
𝑘−1

) ,

𝑒
𝑘

= 𝑦
ref
𝑘

− 𝑦
𝑘
,

𝑢
𝑐
𝑘

= 𝑢
𝑐
𝑘−1

+ 𝐾
𝑃

[(1 +
Δ𝑡

𝑇
𝐼

+
𝑇
𝐷

Δ𝑡
) 𝑒
𝑘

+ (−1 −
2𝑇
𝐷

Δ𝑡
) 𝑒
𝑘−1

+
𝑇
𝐷

Δ𝑡
𝑒
𝑘−2

] ,

𝑢
𝑐
𝑘

=

{{{{

{{{{

{

𝑢max : 𝑢
𝑐
𝑘

> 𝑢max

0 : 𝑢
𝑐
𝑘

< 0

𝑢
𝑐
𝑘

: 0 ≤ 𝑢
𝑐
𝑘

≤ 𝑢max,

D
𝑘

=

𝑁(𝑡
𝑘
)

∑
𝑗=0

𝑊
𝑗
,

𝐾
𝑎
𝑘

= 𝐾
𝑎init

− D
𝑘
,

𝑞
𝑘+1

= 𝑞
𝑘

(1 −
Δ𝑡

𝜏
𝑎
𝑘

) + 𝐾
𝑎
𝑘

Δ𝑡

𝜏
𝑎
𝑘

𝑢
𝑐
𝑘

,

ℎ
1
𝑘+1

= ℎ
1
𝑘

+ Δ𝑡 [
1

𝑆
1

𝑞
𝑘

−
𝐾V
1

𝑆
1

√2𝑔ℎ
1
𝑘

] ,

ℎ
2
𝑘+1

= ℎ
2
𝑘

+ Δ𝑡 [
𝐾V
1

𝑆
1

√2𝑔ℎ
1
𝑘

−
𝐾V
2

𝑆
2

√2𝑔ℎ
2
𝑘

] ,

(26)

where𝑦
𝑘
is themeasurement of thewater level at time 𝑡

𝑘
given

by a level measurement sensor; the measurement noise 𝜖
𝑘
is

supposed to be an independent Gaussian random variable
with standard deviation 𝜎 and mean equal to zero: 𝜖

𝑘
∼

N(0, 𝜎2), 𝑁(𝑡
𝑘
) is the total number of shocks up to time 𝑡

𝑘
≥

0. Please note that the white noise is a classical frame for noise
modeling and this choice does not affect the performance of
the proposedRUL estimationmethodologywhich can handle
non-Gaussian noise (see Section 3.2).

Numerical values for double-tank level control system are
summed up in Table 1.

Figure 6 represents one simulated trajectory of the pro-
cess 𝑍 until the failure of system. The evolution of set-point
with successive change of set-point values is illustrated in
Figure 6(a). The water levels of tank 1 and tank 2, ℎ

1
(𝑡)

and ℎ
2
(𝑡), are reflected in Figures 6(b) and 6(c). Figure 6(d)

shows a simulated trajectory of the actuator capacity. It is
depicted for illustration purpose as if a sensor had been

Table 1: Double-tank model.

Physical parameters
𝑆
1

= 25 𝐾V
1

= 8 𝜏
𝑎

= 1

𝑆
2

= 20 𝐾V
2

= 6 𝑔 = 9.82

𝑢max = 100 𝜎 = 0.05

PID controller parameters
𝐾
𝑃

= 4.2519 𝑇
𝐼

= 18.9817 𝑇
𝐷

= 1.6182

Initial condition: 𝑡 = 0

ℎ
1
(0) = 0 ℎ

2
(0) = 0 𝐾

𝑎init
= 5.0

Natural deterioration
𝜆 = 10

−3
Δ = 0.5

Varying set-point
𝑟
1

= 10 𝛼
1

= 0.003

𝑟
2

= 25 𝛼
2

= 0.004

added. Practically the actuator capacity is unavailable (i.e.,
not measured) on the considered system for diagnosis and
prognosis.This is a health indicator that we aim to estimate at
some discrete times. The inlet flow rate and the control value
applied on the actuator are illustrated by Figure 7.

As depicted in Figure 6, the actuator fails completely (i.e.,
𝐾
𝑎

= 0) at 26411.6 time units, but the failure of system here
is 18951.8 time units. In effect, one can find that after the
system failure instant the water level of tank 2 (the controlled
variable) cannot track the evolution of desired set-point.

Let us now consider an inspection procedure described
in Section 2.4. Here, we suppose that the change of set-
point is immediately detected and 𝑛

max = 6 the maximum
possible observations are recorded with each time duration
Δ𝑡inspec = 4.Themethodology previously described is applied
to deduce prognosis about the RUL of system. The first step
of the method is to compute the pdf of the system state
regarding the available observations until the prognosis time
𝑇prog, for example, at 𝑇prog = 15046.8 time units, that is,
238th inspection date.The available health information of the
system (the noisy observations of the water level of tank 2) at
the inspection times before 𝑇prog is shown in Figure 8.

The described particle filteringmethod is applied in order
to estimate the conditional state of the system knowing
the noisy measurement of ℎ

2
. Approximations of the pdfs

are represented in Figure 9(a) for the water level of tank 1,
Figure 9(b) for the water level of tank 2, and Figure 9(c) for
the actuator capacity with 𝑁

𝑠
= 1000 particles.

The last step of the method is to compute the distribution
of the RUL of the system starting at 𝑇prog knowing the
approximated pdf of the system state at 𝑇prog. The RUL
distribution has been obtained by Monte Carlo simulation
with 1500 trajectories describing the system evolution from
its state at the prognosis time until its failure. The resulting
RUL is depicted in Figure 10. The point estimate of the RUL
can be calculated using the RUL distribution. One can find
here that the mean value of RUL is very close to the real
value.

The estimation of the system conditional reliability
required in the second step of methodology can also be
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Figure 6: A trajectory of the water tank level control system until failure of actuator: (a) set-point, (b) water level of tank 1, (c) water level of
tank 2, and (d) actuator capacity.

obtained using two other Monte Carlo estimators based on
the decomposition of the PDMP process [22]. Another point
of view is to consider the distribution of the RUL as a total
probability:

Pr (𝑇 − 𝑡 > 𝑠 | 𝑌
1

= 𝑦
1
, . . . , 𝑌

𝑛
= 𝑦
𝑛
)

= ∫Pr (𝑇 − 𝑡 > 𝑠 | 𝐾
𝑎

(𝑡) = 𝑥) 𝑓
𝐾
𝑎
(𝑡)|𝑦
1
,...,𝑦
𝑛

(𝑥) (𝑑𝑥) .
(27)

In (27), Pr(𝑇 − 𝑡 > 𝑠 | 𝐾
𝑎
(𝑡) = 𝑥) is the conditional survival

function of the sytem considering that the actuator capacity
random variable is equal to 𝑥 at time 𝑡. Depending on the

deteriorationmodel the conditional survival functionmay be
explicitly obtained. 𝑓

𝐾
𝑎
(𝑡)|𝑦
1
,...,𝑦
𝑛

(𝑥) is the estimated pdf of the
actuator capacity at time 𝑡 considering𝑌

1
= 𝑦
1
, . . . , 𝑌

𝑛
= 𝑦
𝑛
. It

can be obtained by the first step of the proposedmethodology.
This integral in (27) can be numerically computed with
classical schemes when an analytic expression of Pr(𝑇 − 𝑡 >

𝑠 | 𝐾
𝑎
(𝑡)) is available.

As explained previously, the calculation of the RUL using
the numerical integration is not always available because of
the complexity of Pr(𝑇 − 𝑡 > 𝑠 | 𝐾

𝑎
(𝑡) = 𝑥). In our

case study, it can be explicitly deduced with the assumption
of a compound Poisson shock process for the actuator’s
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Figure 7: Control value applied on the actuator (a) and corresponding inlet flow rate (b).
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Figure 8: Noisy observations of water level of tank 2.

deterioration process and uniform distribution for damage
quantity per shock (cf. (28)). Figure 11 compares the survival
function of the RUL at time 𝑇prog = 15046.8 time units which
is estimated by two methods: the proposed 2-step technique
and the numerical integral.The result shows the performance
of the methodology.

In cases of complex deterioration models of actuator [31],
the presented methodology of RUL estimation in the paper
which is based on an intelligent Monte Carlo simulation
shows its performance.

4.3. Impact of Monitoring Information. The presented meth-
od proposes a technique in order to compute the RUL of the
double-tank level control system based on the partial and

imperfect monitoring information. Only the noisy observa-
tions of system output that partially reflect the deterioration
are available. In order to assess the accuracy of the proposed
method, let us consider the case of a direct and perfect
monitoring of the deterioration process. In this case, the
deterioration level of pump can be perfectly observed which
means that 𝐾

𝑎
(𝑡) is observable and perfectly known at

inspection time. The deterioration process of the pump is
then modeled by a compound Poisson process (CPP) [43] or
a cumulative damage model [28] as illustrated in Figure 12.

Under the supposition that the damage per shock follows
a uniform distribution on [0; Δ], the survival function of the
RUL in this ideal case knowing that 𝐾

𝑎
(𝑡) = 𝑥 with 𝑥 > 𝐾

𝑎min
is given by (see Appendix for the details of calculation)

Pr (𝑇 − 𝑡 > 𝑠 | 𝐾
𝑎

(𝑡) = 𝑥)

=

∞

∑
𝑛=0

(𝜆𝑠)
𝑛

𝑛!
𝑒
−𝜆𝑠 1

(Δ)
𝑛

𝑛!

⋅

⌊(𝑥−𝐾
𝑎min )/Δ⌋

∑
𝑘=0

(−1)
𝑘

(
𝑛

𝑘
) (𝑥 − 𝐾

𝑎min
− 𝑘Δ)

𝑛

,

(28)

where the notion ⌊𝑢⌋ is the floor function of 𝑢.
The Conditional Mean Remaining Useful Lifetime

(MRUL) of the pump at age 𝑡 is then described as

𝐸 [𝑇 − 𝑡 | 𝐾
𝑎

(𝑡) = 𝑥]

=
1

𝜆

⌊(𝑥−𝐾
𝑎min )/Δ⌋

∑
𝑘=0

(−1)
𝑘

⋅
1

𝑘!
𝑒
((𝑥−𝐾

𝑎min )/Δ−𝑘) (
𝑥 − 𝐾

𝑎min

Δ
− 𝑘)

𝑘

.

(29)
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Figure 9: Conditional distribution of the system state at time 𝑇prog = 15046.8 time units given the noisy measurements of ℎ
2
for 𝑁

𝑠
= 1000

particles.

Figure 13 depicts the mean time-to-failure calculated by
(29) (in case of perfect monitoring information) and the
mean time-to-failure estimated by the proposed method
(in partial and noisy information case) starting at some
different prognosis instants. One can notice the perfor-
mance of our proposed methodology. For a better lecture of
Figure 13 the 95%, 75%, 25%, and 5% quantiles are pointed
out.

5. Conclusion

This work is a proposal for a positioning of the problem
of the RUL evaluation of a dynamic control system with a
stochastically deteriorating actuator and aims to combine the

dynamic and the stochastic part system modeling using only
the output of the system.Thepresent paper proposes amodel-
ing framework using PDMP that shows the ability to combine
the deterministic behavior of a feedback control system with
the stochastic deterioration process for the actuator. In this
framework, the loss of effectiveness of actuator is modeled by
the random gaps which intersect the deterministic trajectory
of closed-loop system only at random discrete times. Particle
filtering technique is used to estimate online the state of
considered system regarding only the noisy observations of
closed system output. By using a methodology based on
the assumption of Markov property, the Remaining Useful
Lifetime can be deduced with Monte Carlo simulation. A
simulated double-tank level control system was used as
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time units by two methods: Monte Carlo simulation and numerical
computation using the estimated pdf of system state.

a case study to illustrate the efficiency of the proposed
approach.

Future research will be focused on the use of the estima-
tion of the system state and the RUL in order to optimize the
decision-making process. The decision related to inspections
and preventive/corrective actions should be considered using
the RUL information for the purpose of the cost reduction.
Another perspective relates to deterioration modeling of
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Ka = Kaint

Pdf of shock
magnitudes, G

Capacity

Time

Failure zone

0

W1

W2
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Interoccurrence time, f𝜏(t) = 𝜆e−𝜆t

Figure 12: Cumulative damage model of actuator.

actuator. On one hand, the actuator is less efficient through
time because of natural deterioration process. On the other
hand, the set-point level impacts also the deterioration
process of actuator. For example, in a centrifugal pump, an
increased demand of pump flow will cause bearing friction
and impeller wear to increase at a faster rate. Hence, the
impact of the mission profile (the evolution of set-point)
should be addressed.

Appendix

Let 𝑇 be a random variable that denotes the first-hitting-time
of process {𝐾

𝑎
(𝑡), 𝑡 ≥ 0} by the threshold 𝐾

𝑎min
(Figure 12):

𝑇 = inf {𝑡 ∈ R
+
, 𝐾
𝑎

(𝑡) ≤ 𝐾
𝑎min

} . (A.1)

For 𝑥 > 𝐾
𝑎min

we can write

Pr (𝑇 − 𝑡 > 𝑠 | 𝐾
𝑎

(𝑡) = 𝑥)

= Pr (𝐾
𝑎

(𝑡 + 𝑠) ≥ 𝐾
𝑎min

| 𝐾
𝑎

(𝑡) = 𝑥)

= Pr (D (𝑡 + 𝑠) − D (𝑡) ≤ 𝑥 − 𝐾
𝑎min

| 𝐾
𝑎

(𝑡) = 𝑥) .

(A.2)

Since D(𝑡 + 𝑠) = D(𝑡) + D(𝑡, 𝑠), where the cumulative
damage from 𝑡 to 𝑡 + 𝑠 is

D (𝑡, 𝑠) =

𝑁(𝑡+𝑠)

∑
𝑖=𝑁(𝑡)

𝑊
𝑖
, (A.3)

hence,

Pr (𝑇 − 𝑡 > 𝑠 | 𝐾
𝑎

(𝑡) = 𝑥)

= Pr(

𝑁(𝑡+𝑠)

∑
𝑖=𝑁(𝑡)

𝑊
𝑖
≤ 𝑥 − 𝐾

𝑎min
| 𝐾
𝑎

(𝑡) = 𝑥)
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=

∞

∑
𝑛=0

Pr(

𝑛

∑
𝑖=0

𝑊
𝑖
≤ 𝑥 − 𝐾

𝑎min
| 𝑁 (𝑡 + 𝑠) − 𝑁 (𝑡) = 𝑛,

𝐾
𝑎

(𝑡) = 𝑥)

⋅ Pr (𝑁 (𝑡 + 𝑠) − 𝑁 (𝑡) = 𝑛)

=

∞

∑
𝑛=0

(𝜆𝑠)
𝑛

𝑛!
𝑒
−𝜆𝑠

𝐹
(𝑛)

𝑑
(𝑥 − 𝐾

𝑎min
) ,

(A.4)

where 𝐹
(𝑛)

𝑑
(𝑥) is the distribution function of ∑

𝑛

𝑖=0
𝑊
𝑖
.

According to [44], with the supposition that 𝑊
𝑖
follows

𝑈(0, Δ) the pdf of ∑
𝑛

𝑖=0
𝑊
𝑖
is given by

𝑓
(𝑛)

𝑑
(𝑥) =

1

(Δ)
𝑛

(𝑛 − 1)!

⋅ {𝑥
𝑛−1

+

𝑛

∑
𝑘=1

(−1)
𝑘

(
𝑛

𝑘
) [(𝑥 − 𝑘Δ)

+
]
𝑛−1

}

=
1

(Δ)
𝑛

(𝑛 − 1)!

𝑛

∑
𝑘=0

(−1)
𝑘

(
𝑛

𝑘
) [(𝑥 − 𝑘Δ)

+
]
𝑛−1

(A.5)

with 0 ≤ 𝑥 ≤ 𝑛Δ, where the notation 𝑢
+

= max(0, 𝑢) is used.
The distribution function of ∑

𝑛

𝑖=0
𝑊
𝑖
is

𝐹
(𝑛)

𝑑
(𝑥) = ∫

𝑥

0

𝑓
(𝑛)

𝑑
(𝑠) d𝑠

=
1

(Δ)
𝑛

(𝑛 − 1)!

⋅

𝑛

∑
𝑘=0

(−1)
𝑘

(
𝑛

𝑘
) ∫
𝑥

0

[(𝑠 − 𝑘Δ)
+
]
𝑛−1 d𝑠

=
1

(Δ)
𝑛

𝑛!

𝑛

∑
𝑘=0

(−1)
𝑘

(
𝑛

𝑘
) [(𝑥 − 𝑘Δ)

+
]
𝑛

(A.6)

with 0 ≤ 𝑥 ≤ 𝑛Δ.
Another representation of (A.6) is

𝐹
(𝑛)

𝑑
(𝑥) =

1

(Δ)
𝑛

𝑛!

⌊𝑥/Δ⌋

∑
𝑘=0

(−1)
𝑘

(
𝑛

𝑘
) (𝑥 − 𝑘Δ)

𝑛 (A.7)

with 0 ≤ 𝑥 ≤ 𝑛Δ.
Thus, from (A.4) and (A.7) the survival function of the

RUL is

Pr (𝑇 − 𝑡 > 𝑠 | 𝐾
𝑎

(𝑡) = 𝑥)

=

∞

∑
𝑛=0

(𝜆𝑠)
𝑛

𝑛!
𝑒
−𝜆𝑠 1

(Δ)
𝑛

𝑛!

⋅

⌊(𝑥−𝐾
𝑎min )/Δ⌋

∑
𝑘=0

(−1)
𝑘

(
𝑛

𝑘
) (𝑥 − 𝐾

𝑎min
− 𝑘Δ)

𝑛

.

(A.8)

Conditional Mean Remaining Useful Lifetime (MRUL)
knowing 𝐾

𝑎
(𝑡) is given by

𝐸 [𝑇 − 𝑡 | 𝐾
𝑎

(𝑡) = 𝑥]

= ∫
∞

0

Pr (𝑇 − 𝑡 > 𝑠 | 𝐾
𝑎

(𝑡) = 𝑥) d𝑠

=

∞

∑
𝑛=0

(∫
∞

0

(𝜆𝑠)
𝑛

𝑛!
𝑒
−𝜆𝑠d𝑠) 𝐹

(𝑛)
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𝑎min
)

=
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𝜆

∞

∑
𝑛=0

𝐹
(𝑛)

𝑑
(𝑥 − 𝐾

𝑎min
) .

(A.9)
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From (A.9) and (A.7), the MRUL can be calculated by

𝐸 [𝑇 − 𝑡 | 𝐾
𝑎

(𝑡) = 𝑥]

=
1

𝜆
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𝑘 1
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𝑎min )/Δ−𝑘)
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𝑥 − 𝐾
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Δ
− 𝑘)

𝑘

.

(A.10)
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