
HAL Id: hal-02361863
https://utt.hal.science/hal-02361863v1

Submitted on 2 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Web as an Infrastructure for Knowledge
Management: Lessons Learnt

Aurélien Bénel, L’Hédi Zaher

To cite this version:
Aurélien Bénel, L’Hédi Zaher. The Web as an Infrastructure for Knowledge Management: Lessons
Learnt. Proceedings of the 6th International Conference on Swarm and Computational Intelligence
(ICSI), Lecture Notes in Computer Science 9141, pp.431-438, 2015, �10.1007/978-3-319-20472-7_47�.
�hal-02361863�

https://utt.hal.science/hal-02361863v1
https://hal.archives-ouvertes.fr


The Web as an infrastructure for knowledge
management: Lessons learnt

Aurélien Bénel1 and L’Hédi Zaher2

1 ICD/Tech-CICO, Troyes University of Technology (France)
aurelien.benel@utt.fr

2 IM Développement (Tunisia)
hedi.zaher@imdev.tn

Abstract. Research works, whether they aim at building a ‘Semantic
Web’ or a ‘Social Semantic Web’, consider as a prerequisite that the
ideal architecture for managing knowledge would be the Web. Indeed,
one can only admire how the CERN internal hypertext scaled out to a
world wide level never seen before for this kind of applications. However,
current knowledge structures and related algorithms cause new kind of
architectural issues. About these issues faced by both communities, we
would like to bring out three lessons learnt, three steps in setting up
a scalable infrastructure. We will focus on a typical case of knowledge
management but with a higher than usual volume of data. Starting with
SPARQL, a commonly used Semantic Web technology, we will see the
benefits of the REST architecture and the MapReduce design pattern.

1 Introduction

This paper deals with Web services design for knowledge management. Although
HTTP scaled out remarkably for the World Wide Web, scaling out knowledge
management using web services is still an open issue.

Weirdly enough, in the ‘Semantic Web’ program (Berners-Lee et al., 2001),
the World Wide Web Consortium focused more on formats and languages than
on the use of its own protocol. Meanwhile, through trials and errors, we de-
veloped an experience in the design of an infrastructure for a ‘Social Semantic
Web’ (Zacklad et al., 2003, Bénel et al., 2010). Even if this approach has been
developed as an opposite to the ‘Semantic Web’, we think that the lessons learnt
in setting up a scalable infrastructure could benefit both approaches.

We will focus on a typical case of knowledge management but with a higher
than usual volume of data. Then, we will bring out three steps in designing an
infrastructure. Starting with SPARQL, a commonly used Semantic Web tech-
nology, we will see the benefits from the REST architecture and the MapReduce
design pattern.

2 Requirements

We will illustrate our experience feedback with i-Semantec, a project related to
knowledge capitalization, management and reuse in large industrial companies.



In these firms, data and documents from various stakeholders and relating to
the lifecycle of the product are already managed by integrated systems named
‘PLM’ (for ‘Product Lifecycle Management’). But there are mainly two problems
with these integrated systems. First, because the integration is based on the for-
malization of the main business processes, it often ignores the specificity of each
profession. And then each profession tends to implement its own databases and
documents, which escape capitalization. Second, in a time of market instability,
the information system should be more adaptable to the continuous change of
processes and partners networks needed to meet customers’ requirements.

Since this project only serves as an example we will not write more about
functional and technical requirements. We will only focus on the feature list we
had to implement:

– browsing a technical data warehouse which models may vary depending on
the project;

– enhancing these data with freely defined attributes.

Fig. 1. Enriching the technical data of a robot in i-Semantec (Agorae screenshot)

Items had to be browsable:

– by class of items,
– by (used) attribute and value,
– from another item through a composition relationship, a sequence in a pro-

duction line, etc.



3 First step: Semantic Web technologies

In the i-Semantec project, our partners were specialists in product data man-
agement. They extracted data from two industrial projects as triples and stored
them in a RDF data warehouse system (Sriti et al., 2007). This system imple-
mented the HTTP biding for SPARQL (Clark et al., 2008). Each project had
been provided with its data model as a schema in RDFS. We then tried to build
the features described earlier on this typical Semantic Web infrastructure. As
we will see, we experienced serious and blocking issues.

3.1 Browsing items

The first issue encountered in implementing the Web service for items browsing
was about performance. As shown in Tab. 1, response times which were quite
acceptable for 1k triples, scaled very badly with 1 million triples. Moreover,
the only mechanism for getting better response times on successive identical
queries was the in-memory cache of the database, which is very dependent on
free memory.

approx. 1k items approx. 1G items

Item details 0.5 1
Listing items types 0.5 0.5
Listing items for a type 0.2 40
Listing used attributes 0.4 30
Listing values for an attribute 0.1 3
Listing items for an attribute value 5

Table 1. Comparison of response time to SPARQL queries (seconds) on databases
containing respectively 834 and 931,338 RDF triples. Tests are done with RAP 0.9.4
by Ch. Bizer and MySQL on Linux with a Xen virtual machine equivalent to an AMD
Athlon 64 X2 with 2 Gb memory.

3.2 Enriching items

Triples model, aka Entity-attribute-value model (EAV), is a well known model
which can combine multiple schemas and accept user-defined attributes.

However, in its RDF/XML implementation, attributes are XML elements. As
XML elements, they should be defined at design time in a schema. This makes
it more difficult to let users define attributes on the fly, contrary to JSON for
instance, where an attribute (key) is just a string (Crockford, 2006).

Moreover, SPARQL Update, the extension to the SPARQL query language
that provides the ability to add, update, and delete RDF triples was not imple-
mented at the time of the project. The five-year lag between the normalization



of queries (2008) and updates (Schenk et al., 2010) (2013) is probably indicative
of the difference in priorities between the Semantic Web and the Social Semantic
Web.

Therefore, we had to use our own knowledge management Web service for
user-defined enrichments, integrated with a read-only connector used to query
the RDF data warehouse through our own protocol.

Weirdly enough, in an opportunistic and serendipitous manner, the fact that
it was a read-only access and a non-updatable data warehouse solves the first
issue: payloads computed from the RDF data could be cached once and for all
on disk.

In other words, to meet the requirements we had to ‘hack’ the Semantic Web
technologies, which appeared more a burden than a help for this project.

4 Second step: REST architecture

From an architectural perspective, one notable difference between our protocol
(Zhou et al., 2006) and SPARQL was that our protocol was ‘RESTful’.

REST is an architectural style for ‘distributed hypermedia systems’, intro-
duced by one of the author of HTTP in his thesis (Fielding, 2000). It aims at
generalizing the scalable design of the original Web to the complex Web appli-
cations and Web services of nowadays. As its complete name suggests (‘repre-
sentational state transfer’), the main idea of REST is that in a protocol like
HTTP, a payload should always be a state of a resource representation. This
implies that neither resource representation nor resource identifiers should refer
to actions. Instead, one should use the corresponding methods defined in the
protocol (e.g. GET, POST, PUT, DELETE, HEAD, etc. in HTTP). To qualify
these methods, the HTTP specification introduces two important notions: ‘safe’
and ‘idempotent’.

“In particular, the convention has been established that the GET
and HEAD methods SHOULD NOT have the significance of taking an
action other than retrieval. These methods ought to be considered ‘safe’.”
(Fielding et al., 1999).

Being safe, requests using GET (accordingly to the specifications) will be
cacheable, preemptively loadable, or even usable in a repeatable history. However
to be cached by a server, a client, a proxy or a reverse proxy, changing POST
with GET (like SPARQL does) will not be enough. The server has to implement
a cache invalidation mechanism based on an update timestamp or on a content
hash. Moreover, a resource representation should be cached only if there are
chances that it will be retrieved again. Therefore a URL should map to an
identifiable object rather than to a common query. This also makes integration
easier, since using a different data management system would not require to
emulate a complete query language but just one query.



“Methods can also have the property of ‘idempotence’ in that (aside
from error or expiration issues) the side-effects of N > 0 identical re-
quests is the same as for a single request. The methods GET, HEAD,
PUT and DELETE share this property.” (Fielding et al., 1999).

Being idempotent, requests using PUT or DELETE (accordingly to the spec-
ifications) will be resilient to client retries on timeouts. Contrary to the updates
done with POST by SPARUL (Schenk et al., 2010), an update with PUT will
never cause multiple creations due, for example, to an excessive load of the
server.

At this stage, we have what most bloggers call a REST service (Tilkov, 2007):

– one updatable resource by object (with computed links to other objects),
– one ‘super-resource’ by class (in order to list instances).

However, we will see in the next section that this design is not ideal for cache
management and for complex actions performance, and we will introduce a more
efficient RESTful design.

5 Third step: MapReduce design pattern

In the previous section, we described an approach in which every object is
mapped to an HTTP resource. The main issue of this naive way to follow the
REST architecture is the difficulty to implement a server-side cache. Indeed, if
the resource representation includes data from other resources (typically for re-
verse links), it becomes quite complex to determine from the history if a resource
representation has changed without computing it again.

A second issue in this approach is that the more objects you need to load, the
more requests you have to send. For example, loading the data of a prolific user
of our software (to run a data visualization algorithm (Zhou & Bénel, 2008))
required 25 000 requests with this architecture. Because of each request latency,
the overall time needed to load these data is 31 minutes! To reduce latency
to a constant time, the number of requests needed for a complex operation
should be constant. Therefore, on large datasets, a bulk of objects should be
mapped to a single resource. Then a new problem would arise: the gain of caching
a resource representation will be very low since it would change much more
frequently. Instead, one should cache partial results needed for generating this
representation. This can be fairly complex, but luckily, the MapReduce design
pattern addresses this problem.

MapReduce (Dean & Ghenawat, 2004) is a design pattern for processing large
data sets. In a MapReduce framework, developers only have to implement (see
Fig. 2):

– a map function that “generates [for each chunk of data] a set of intermediate
key/value pairs”,

– and a reduce function that “merges all intermediate values associated with
the same intermediate key”.



Then the framework handles the cache of partial results and the scaling of the
algorithm over different processes and computers.

map

map

k1

k1

k2

k2

k2

k1

k2

map reduce

map

map
reduce

Fig. 2. MapReduce: data flow

One should note that processing data with MapReduce is drastically different
from doing it with a relational database. In a relational approach, the index
depends on the data model, and is designed to optimize any queries that could
be defined on it. In a MapReduce approach, the index depends on the map
functions. Algorithms must be adapted to use intermediate values sorting wisely
(similarly to what was done with IBM/BULL card sorters). Compared with the
relational approach, MapReduce is like computing the results of a query for every
possible parameter found in the data. What could be seen as a burden is usually
an optimization, since only partial results affected by an update are computed
again.

As observed in a database system like CouchDB (Anderson et al., 2010),
using MapReduce has three important impacts on a REST service interface.

First, different kinds of resources are needed: the objects that are updatable
and the views that are selections on the results of applying map and (optionally)
reduce functions on these objects. In other words, contrary to what we saw in
the previous section, computed values are not displayed in updatable resources
anymore but in different resources that are read-only.

Second, owing to the implementation of the MapReduce framework (partial
results cache and index), getting a broader view is incredibly faster than getting
the same data with a bunch of narrower ones. Therefore, the granularity of
resources depends on their type: views tend to be far more coarse-grained than
objects (whose granularity corresponds to what is usually updated at the same
time).

Third, because MapReduce aims at distributing computing, creating an ob-
ject identifier should be done in a distributable way. As many peer-to-peer soft-
ware, CouchDB uses ‘universal unique identifiers’ (UUID). But because a UUID
(Leach et al., 2005) corresponds to a ‘uniform resource name’ (URN) rather than
to a ‘uniform resource location’ (URL), we need to reinterpret the browsability
principle of REST services (Fielding, 2008) in the light of the original chapter



thesis about REST (Fielding, 2000) which stated that the use of URNs instead of
URLs could “improve the longevity of resources references”. Untying a resource
reference from a location has also interesting effects on services integration, since
clients can aggregate the descriptions of a resource that are scattered over differ-
ent services that do not necessarily ‘know’ each other. This can be particularly
handy to meet the functional requirements given earlier, since data coming from
the existing database system can be provided through a read-only adapter ser-
vice, while every community (or person) can model and store its (his) ‘viewpoint’
on its (his) own service.

6 Conclusion

The three steps we experienced in designing a scalable Web service infrastructure
for knowledge management could be summed up by focusing on what an URL
maps to:

1. a query,
2. an object with computed attributes,
3. an object or a view.

As we saw in this paper, this progression has drastic effects on caching, distri-
bution and integration.

If our proposition is still novel, it is probably because very few in the ‘Se-
mantic Web’ community have had interest in enterprise technologies like REST
(Ogbuji, 2010) or MapReduce (Oren et al., 2008). As we did with use models,
we hope that performance issues will be considered by the community in order
to meet real user needs.

References

Anderson, J.C., Lehnardt, J., Slater, N.: CouchDB: The Definitive Guide. O’Reilly
(2010)

Bénel, A., Zhou, C., Cahier, J.-P.: Beyond Web 2.0... And Beyond the Semantic Web.
D. Randall & P. Salembier. From CSCW to Web 2.0: European Developments
in Collaborative Design. Computer Supported Cooperative Work. Springer (2010)
155–171

Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, May
17 (2001)

Bizer, Ch., Heath, T., Berners-Lee, T.: Linked data-the story so far. International
Journal on Semantic Web and Information Systems (IJSWIS) 5 3 (2009) 1–22

Bizer, Ch., Schultz A.: The Berlin SPARQL Benchmark. International Journal On
Semantic Web and Information Systems (IJSWIS) 5 2 (2009) 1–24

Clark, K.G., Feigenbaum, L., Torres, E.: SPARQL Protocol for RDF. Recommendation.
W3C (2008)

Crockford, D.: The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627. IETF (2006)



Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
Proceedings of the Sixth Symposium on Operating System Design and Implemen-
tation (2004)

Dieng-Kuntz, R., Matta, N.: Knowledge Management and Organizational Memories.
Proceedings of European Conference on Artificial Intelligence (2004)

Fielding, R.T.: REST APIs must be hypertext-driven. Blog post, 20 oct. (2008)
Fielding, R.T.: Architectural Styles and the Design of Network-based Software Archi-

tectures. PhD thesis. University of California. (2000)
Fielding, R.T., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee,

T.: Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. IETF (1999)
Leach, P., Mealling, M., Salz, R.: A Universally Unique IDentifier (UUID) URN Names-

pace. RFC 4122. IETF (2005)
Ogbuji, C.: SPARQL 1.1 Uniform HTTP Protocol for Managing RDF Graphs. Working

draft. W3C (2010)
Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:

Sindice. com: A document-oriented lookup index for open linked data. Interna-
tional Journal of Metadata, Semantics and Ontologies 3 1. Inderscience (2008)
37–52

Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Recommen-
dation. W3C (2008)

Gearon, P., Passant, A., Polleres, A.: SPARQL 1.1 Update. Recommendation. W3C
(2013)

Sriti, M.-F., Eynard, B., Boutinaud, Ph., Matta, N., Zacklad, M.: Towards a semantic-
based platform to improve knowledge management in collaborative product devel-
opment. Proceedings of the thirteenth International Product Development Man-
agement Conference (2007)

Tilkov, S.: A brief introduction to REST. InfoQueue, 10 dec. (2007)
Zacklad, M., Cahier J.-P., Pétard, X.: Du web cognitivement sémantique au web socio

sémantique : Exigences représentationnelles de la coopération. Web sémantique et
Sciences humaines et sociales (2003)

Zaher, L’H., Cahier, J.P., Zacklad, M.: The Agoræ/Hypertopic approach. Workshop
on Indexing and Knowledge in Human Sciences (IKHS). M. Harzallah, J. Charlet,
N. Aussenac-Gilles. Actes de la semaine de la connaissance 3 (2006) 66–70

Zhou, C., Bénel, A.: From the crowd to communities: New interfaces for social tagging.
Proceedings of the Eighth International Conference on the Design of Cooperative
Systems (2008) 242–250

Zhou, C., Bénel, A., Lejeune, C.: Towards a standard protocol for community-driven
organizations of knowledge. Proceedings of the thirteenth international conference
on Concurrent Engineering. Frontiers in Artificial Intelligence and Appl. 143. IOS
Press (2006) 438–449


