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Abstract—The paper addresses the problem of monitoring
online a non-stationary process to detect abrupt changes in the
process mean value. Two main challenges are addressed : First,
the monitored process is non-stationary ; i.e. naturally changes
over time and it is necessary to distinguish those “regular”
process changes from abrupt changes resulting from potential
failures. Second, this paper aims at being applied for industrial
processes where the performance of the detection method must be
accurately controlled. A novel sequential method, based on two
fixed-length windows, is proposed to detect abrupt changes with
guaranteed accuracy while dealing with non-stationary process.
The first window is used for estimating the non-stationary process
parameters while the second window is used to execute the
detection. A study on the performances of the proposed method
provides analytical expressions of the test statistical properties.
This allows to bound the false alarm probability for a given
number of observations while maximizing the detection power
as a function of a given detection delay. The proposed method
is then applied for wheels coating monitoring using an imaging
system. Numerical results on a large set of wheel images show
the efficiency of the proposed approach and the sharpness of the
theoretical study.

Index Terms—Process control, Statistical analysis, Sequential
analysis, Parameter estimation, Hypothesis testing theory, Non-
stationary process.

I. INTRODUCTION

In recent years, the change-point detection topic has been
receiving increasing attention in various domains. It addresses
the problem of detecting the point or multiple points at which
a “significant change” occurs in a time series. These points
are referred to as change points. The change-point detection
process must be able to distinguish between a “significant
change” indicating an abnormal event, and an “insignificant
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of System Modelling and Dependability, ICD, UMR 6281 CNRS, Troyes
University of Technology, Troyes, France.

change” due to noise and that indicates a predicted or a
normal behavior of data. Distinguishing change-points from
spurious noise is very important in order to keep a false alarm
rate. However surprisingly, sequential methods are hardly
provided with established, or bounded, false-alarm probability
and power functions.

A. State-of-the-art

In general, change-point detection methods can be classified
into “posteriori” and “sequential” methods. The choice of
the appropriate class of methods depends heavily on the
application.

“Offline” methods, also referred to as retrospective
methods, are considered in many applications, such as climate
change study [1], biological applications [2], [3], econometric
applications [4], and utility change in social media [5], to cite
few topics. Such methods can only be applied after all the
data, or observations, are received. Then, the objective is to
detect all the change-points available in the data, along with
estimating their locations. In applications for which these
types of methods are used, the goal is usually to analyze time
series and not to take immediate action after detecting the
change points.
On the opposite, many other applications analyze data in real
time with the goal to take an immediate response as soon as
a change in the data is detected, as it can reveal a system
failure which must be handled. In such cases, real-time data
acquisition and analysis processes are required in order to
raise an alarm as soon as a change-point is detected. Such
problems fall within the scope of “sequential” methods, also
referred to as online or real-time methods, in which it is
assumed that the data are received sequentially, and that until
a change-point is detected the process is allowed to continue.
Contrariwise, when the data change, typically revealing a
failure or a change in the underlying process, the aim is to
detect the change-point with a minimal delay, in order to take
the relevant actions, while also preserving a low false-alarm.
Obviously, minimizing the detection delay and the false-alarm
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rate are contradictory goals. Sequential methods have been
especially attracting attention from the industrial world, in
which the term control chart is widely used, for quality control
applications [6]–[8]. Industries have been pushing to produce
higher quality and innovative products, which requires more
and more manufacturing processes, while on the opposite,
they are also required to reduce costs and production time.
Hence, early fault detection for these industries is crucial
to minimize downtime, reduce the product losses, and thus
reduce manufacturing costs.

“Sequential” change-point detection methods can be further
categorized into “parametric” and “non-parametric” methods.
On the one hand, “non-parametric” or data-driven methods
have the advantage not to require any assumptions or any
model on the data. They are based on statistical methods, espe-
cially supervised or non-supervised learning, to build detection
rules based on large set of observations. Such decision rules
are then applied to new data. While not requiring a model
to describe the observations, those methods may, however, be
limited, typically when the manufacturing process can largely
change, and they are hardly provided with known statistical
performances.
On the other hand, “parametric” methods are used when suffi-
cient information on the monitoring process is available such
that a statistical model of the observations can be designed. In
other words, this approach requires that some distributional
knowledge of the data is available and employed into the
detection scheme. A common limitation of such methods is
that they rely on pre-specified parametric models that are based
on a priori information about the form of the data distribution,
which is not always available.

B. Contribution and Organization of This Paper
The present paper falls within the scope of “parametric

sequential” with the goal to monitor a non-stationary process
in real time in order to detect an abrupt change in its mean. In
an industrial situation, it is required to detect the change within
a given maximal detection delay (number of observations
after the change) and it is wished to control the false-alarm
probability over a fixed run length. In this operational context,
a two fixed-length windows sequential method (2FLW-SEQ)
based on the well-known CUSUM procedure is proposed for
which the statistical performances are bounded. This sequen-
tial method is then applied for wheels coating monitoring.
In fact, when a spray gun nozzle partially clogs, or gets
blocked, this will be translated into a sudden change in the
paint intensity caused by the lack of paint on the wheel.
The main contributions of the present paper are the following:

1) A two fixed-length windows sequential method (2FLW-
SEQ) is proposed for monitoring a non-stationary pro-
cess in real time. The first window is considered to deal
with the non-stationarity of the process, while the second
window is the one used for the sequential detection
procedure.

2) The proposed sequential procedure operates under the
non-classical criteria of minimizing the worst-case prob-
ability of missed detection under the constraint of a

maximal detection delay, while controlling the false
alarm probability for a given number of observations.

3) A statistical study of the proposed method is established
that allows to lower bound the detection power as a
function of the maximal allowed detection delay, and
enables upper bound the false alarm probability for a
given number of observations.

4) The proposed context enables the user to prescribe a
maximal detection delay and a false alarm probability
for a given number of observations, and can know which
change amplitudes can be detected with guaranteed
minimal probability.

One can note that the present submission is an extended
version of the conference paper [9]. In comparison to this
prior publication, this paper includes a statistical study that
allows the calculation of an upper bound of false detection
probability and a lower bound of power function. The
sharpness of those theoretical findings is verified on a large
dataset. This paper also includes a practical study on the
impact of the parameters of the proposed methodology in
order to select the most relevant ones.

The present paper is organized as follows. Section II briefly
recalls the well-known cumulative sum (CUSUM) proce-
dure [10] and states the problem of change-point detection for
a non-stationary process emphasizing on the main difficulties
and limitations of the CUSUM in this context. Next, section III
presents the proposed method ; first, the method used to
deal with observations’ non-stationarity is presented. Then, to
comply with requirements on low false alarm probability and
highest change-point detection performance under a maximal
delay constraint, the performance of the proposed method
is also studied in Section III. Then, section IV presents
the problem of paint coating intensity variation on produced
wheels. Finally, Section V presents numerical results obtained
on a wide range of real data and studies the sharpness of
the theoretical performance for the proposed method. Finally,
Section VI concludes the paper.

II. CHANGE-POINT DETECTION PROBLEM STATEMENT

This section formally states the usual problem of abrupt
change-point detection and recalls the well-known CUSUM
method before highlighting the main particularity of the
problem addressed in this paper.

The sequential change-point detection problem can be for-
mulated as follows1. Let us consider {xn}n≥1 a sequence
of independent and identically distributed (i.i.d) observations
that are acquired sequentially. At the beginning, the sequence
is considered in a normal state, and the observations follow
a probability distribution Pθ0 . Then, at an unknown point
v ≥ 0 (the change-point), the sequence reaches an abnormal
state, in which the observations follow a different probability

1The reader is referred to [6]–[8] for detailed introduction on sequential
and change-point detection.
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distribution Pθ1 . The problem formulation can be rewritten as
follows:

xn ∼

{
Fθ0 if 1 ≤ n ≤ v,
Fθ1 if n ≥ v + 1,

(1)

The sequential change-point detection consists of detecting the
change-point v as soon as it occurs, while at the same time
preserving a low false alarm rate.
For the online continuous inspection, for each new observation
received, a decision rule is computed to test between the two
following hypotheses:{

H0 : {θ = θ0},
H1 : {θ = θ1},

(2)

As long as the test (also called the stopping rule) fails to reject
H0, the data acquisition continues. When the observations xi
are statistically independent, a usual approach to decide be-
tween the hypotheses H0 and H1 is to use the cumulative sum
(CUSUM) procedure which can be defined, for observations
up to N as follows [10]:

δN =

{
0 if SN1 = max(SN−11 + sN − λ; 0) < τ,

1 if SN1 = max(SN−11 + sN − λ; 0) ≥ τ,
(3)

where λ is a constant that avoids spurious false-alarms, τ is a
conveniently pre-defined threshold and, for initialization, S0

1 =
0. Though the decision statistics sN and the constant λ were
not defined in [10], the logarithm of the well-known likelihood
ratio is commonly used:

sn = log

(
fθ1(xn)

fθ0(xn)

)
, (4)

where fθ0 and fθ1 are the probability density functions
(PDF) under hypotheses associated with distributions Pθ0 and
Pθ1 respectively, which are assumed to be known, and the
constant λ is usually the average of the expected values
λ = 1/2 (EH0

[s] + EH1
[s]).

A. Difficulties of Non-stationarity and Criterion of Optimality
In the present paper, the studied process is non-stationary

in the mean. As a consequence, the problem of detecting an
abrupt change in an i.i.d random sequence is not relevant
anymore because (1) the hypotheses are composite, that is
they are characterized by a set of possible parameters Θ0

and Θ1 and (2) for observation xn the PDFs fθ0 and fθ1 are
unknown. In fact, when monitoring a non-stationarity process
whose distribution parameters may “naturally” change over
time, the change-point detection problem as stated in (1)–(2)
is no longer relevant. Indeed, since under the hypothesis H0

the distribution parameter θ0 may change within the set Θ0,
the hypotheses are defined by:{

H0 : {θ ∈ Θ0},
H1 : {θ ∈ Θ1},

(5)

and one should instead consider the following sequential test
problem:

xn ∼

{
Fθ0,n , θ0,n ∈ Θ0 if 1 ≤ n ≤ v,
Fθ1,n , θ1,n ∈ Θ1 if n ≥ v + 1,

(6)

The main issue to tackle those scientific difficulties is to
have an accurate model of Θ0 and Θ1; in other words, to
be able to model with enough accuracy the set of “regular”
changes in the process of the abrupt changes that reveals a
malfunctioning.
Regarding the scientific difficulties, when the distribution
parameters θ0,n and θ1,n are unknown, in such a context
the likelihood ratio (4) cannot be calculated for a given
observation xn. A usual solution that is adopted in the present
paper is to use a generalized likelihood ratio that consists
of substituting unknown parameters θ0,n and θ1,n by their
estimations using the maximum likelihood estimation.

The second main challenge addressed in the present paper is
the introduction of an unusual criterion of optimality. Indeed
the CUSUM has been shown to be asymptotically optimal with
respect to the criterion that consists in minimizing the average
worst case detection, see [23]–[25] for details on the so-called
Lorden’s criterion and CUSUM optimality.
However, a minimal average delay is not equivalent to a
maximal detection accuracy for a given detection delay. Fo-
cusing on a practical industrial context, the present paper
aims at maximizing the probability of change-point detection
for a fixed maximal delay; this is justified for cost-reduction
purposes as the change point corresponds in practice to a
malfunction in a production process.

III. PROPOSED CHANGE-POINT METHOD AND
ASSESSMENT OF ITS STATISTICAL PROPERTIES

As discussed in section II-A, the purpose of this article is to
design a change point detection method in the case of a non-
stationary process with a constraint on the maximal detection
delay. This section first presents how to deal with the process
non-stationarity that represents a nuisance parameter; then the
novel two fixed-length windows sequential method (2FLW-
SEQ) is presented, that fits with the constraint on the detection
delay, and rejects online the nuisance parameter generated by
the process non-stationarity. Eventually, the statistical prop-
erties are studied in terms of probability of false alarm for
a given run-length (number of observations under H0) and
probability of change-point detection under the maximal delay
constraint.

A. Process Modeling

Let us consider a sliding window of size L. After the first
L observations, for each new received data xN , the window
slides by one point to contain the observations from xN−L+1

to xN . Let YN = (xN−L+1, . . . , xN−1, xN )T denotes this
window after the reception of observation xN . The vector YN
is modeled with the following normal distribution:

YN ∼ N (µN , σ
2IL), (7)

where µN is the expectation in this window, IL is the identity
matrix of size L, and σ2 is the variance which is assumed
constant for all windows YN ,∀N ≥ L.
A linear parametric model is proposed to represent the ex-
pectation µN . It essentially consists in representing all the
observations in the window YN as a weighted sum of q basis
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vectors that represent the columns of a matrix H of size L×q.
The weight of this sum represents the vector of q parameters
dN . Hence, the expectation µN can be written as:

µN = HdN . (8)

In this paper, the model of H is based on the following
algebraic polynomial:

h(x) =

q−1∑
j=0

djx
j , (9)

with q − 1 the degree of the algebraic polynomial. The use
of a linear parametric model in statistical testing theory has
been widely exploited [13]. One can note that we have used
such approach of polynomial image modeling in some of
our prior work on image processing [14]–[16] and especially
for the detection of defects on wheels’ surface [17], [18].
However, here it is used in a simplistic manner within a
sequential detection method to remove the possible slight
“natural” intensity changes that are not abnormal and should
thus be removed.

It follows from Eqs. (7) and (8) that in the absence of any
anomaly, the vector of observations YN is modeled by:

YN ∼ N (HdN ,σ
2IL). (10)

On the opposite, when a defect happens in the process, a
change occurs in the mean value which will affect all the
observations after the change-point. Consequently, when the
change occurs, the observations YN can be modeled as:

YN ∼ N (HdN + aKM ,σ
2IL), (11)

where the sudden shift in the mean value is described by the
vector KM , of size L, containing L − M zeros before the
change occurs and minus ones M times after, and the constant
a > 0 represents the amplitude of the change. Here, M is the
number of maximal acceptable observations with defects. For
example, the change vector K1 = (0, 0, ..., 0,−1) describes a
change that only affects the last observation in the window of
size L.

It is important to note that the “acceptable” variation of
mean value, modeled by HdN , is a nuisance parameter as it
is of no use for the considered detection problem. To deal with
this nuisance parameter, it is proposed to use the maximum
likelihood (ML) estimation method to perform a rejection of
this nuisance parameter as follows:

rN =
1

σ
WYN . (12)

Here W is the orthogonal projection of size L − q × L,
onto the null space of H , whose columns correspond to the
eigenvectors of the matrix IL−H

(
HTH

)−1
HT associated

with eigenvalues equal to 1. The vector rN represents the
projection of the observations onto the null space of H.

B. 2FLW-SEQ Procedure

Among others, the matrix W has the following useful
properties: WWT = IL−q ; it thus follows from Eqs. (10)-
(12), that the residuals rN can be modeled under hypotheses
H0 and H1 by the following statistical distribution:{

H0 : {rN ∼ N (0, IL−q)}
H1 :

{
rN ∼ N

( a
σ
θM , IL−q

)}
,

(13)

where θM represents the shift of expectation, due to the pro-
cess failure, projected onto the null space of H: θM = WKM .

From the definition of the hypotheses in Eq. (13), after
the rejection of the nuisance parameter HdN , it is obvious
that the considered detection problem essentially consists in
the detection of a specific signal in noise. In this paper, it
is proposed to use a sequential method with a fixed window
of length M which also corresponds to a pre-defined fixed
maximal detection delay. Similar approaches have been studied
in the context of sequential detection in [19], [20]. They
proposed to use the well-known match space detection which
is given in our case by:

δN =

{
0 if S̃NN−L+1 = θTMrN < τ

1 if S̃NN−L+1 = θTMrN ≥ τ.
(14)

From Eq. (13) it is straightforward to establish the statistical
distribution of results S̃NN−L+1 of the proposed 2FLW-SEQ:H0 :

{
S̃NN−L+1 ∼ N (0, ‖θM‖22)

}
H1 :

{
S̃NN−L+1 ∼ N

( a
σ
‖θM‖22, ‖θM‖22

)}
.

(15)

which can be normalized, for the sake of clarity, as follows:
H0 :

{
S̃NN−L+1

‖θM‖2
∼ N (0, 1)

}

H1 :

{
S̃NN−L+1

‖θM‖2
∼ N (

a

σ
‖θM‖2, 1)

}
.

(16)

It is important to note that the choice of the first window size
L and the polynomial degrees q − 1 is crucial and essentially
depends on the observations. First, L must be much greater
than M in order to avoid any significant impact of the abrupt
change on the estimate of the linear model parameters dN .
On the opposite, L must remain reasonably small such that
the linear model will well model the observations’ expectation
and to ensure that the residuals rN follow a standard normal
distribution under H0.
As for q, it is the opposite scenario. Indeed, high polynomial
degrees may lead to the shift being eliminated with the
projection (12), and thus removed from the residuals. On
the other hand, very small polynomial degrees may not be
sufficient to properly model the process, and thus putting parts
of the healthy observations among the residuals, and probably
losing the standard normal distribution under H0.

C. 2FLW-SEQ Performances

A sequential change-point detection procedure stops as
soon as its decision rule δn becomes 1. Then, the stopping
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time T is defined as the smallest observation index n for
which δn = 1. A correct change detection consists in stopping
the sequential procedure after the change has occurred, which
means T ≥ v where v is the change point index. A false
alarm is raised in case where T < v, i.e. the process has
been stopped before the change occurred. A usual criteria
for a sequential procedure is to detect the change as soon as
it occurs, thus minimizing the detection delay T − v. Many
criteria have been used to investigate the optimality of change
point detection algorithms concerning the detection delay, as
the “mean delay”, the “conditional mean delay”, the “worst
mean delay”, etc. . . . [10], [21]–[23]. In that context, the
CUSUM algorithm has been proven to be optimal in [23]–
[25]. However, in the proposed detection scheme, the goal is
to fix a detection delay after which the change detection is
considered too late. In fact, minimizing the detection delay
does not necessarily lead to a higher detection power, or
to a small probability of missed detection. Therefore, the
aim of the proposed sequential method is to minimize the
worst-case probability of missed detection under constraint on
the worst-case probability of false alarm for a given run length.

The stopping time of the classical CUSUM procedure is
given by :

Tc = inf
n≥1
{n : max

1≤k≤n
S̃nk ≥ τ} (17)

In this context, the CUSUM procedure takes into account all
previous observations. However, for the proposed sequential
method, after collecting the first L observations, the stopping
time can be defined as :

T2FLW = inf
n≥L
{n : S̃nn−L+1 ≥ τ} (18)

The probability of missed detection can be considered as
the probability that the detection delay is higher than the
acceptable one defined as M , knowing that the detection is
made after the change has occurred with T ≥ v. Then, to the
purpose of minimizing the probability of missed detection, the
following criteria can be applied :

Pmd(M) = sup
v≥L

P(T − v + 1 > M | T ≥ v) (19)

where Pmd(M) is the worst-case probability of missed detec-
tion. Minimizing this probability will lead to maximizing the
detection probability denoted as β(M) = 1− Pmd(M).
Eq. (19) can be developed to :

Pmd(M) = sup
v≥L

P
(
M+v−1⋂
n=L

{
S̃nn−L+1 < τ

})
P
(
v−1⋂
n=L

{
S̃nn−L+1 < τ

}) (20)

It is complicated to calculate the exact value of Pmd(M),
instead it is proposed to calculate an upper bound. It can be
seen that :

P

(
M+v−1⋂
n=L

{
S̃nn−L+1 < τ

})
≤

P

({
v−1⋂
n=L

{
S̃nn−L+1 < τ

}}⋂{
S̃M+v−1
M+v−L < τ

}) (21)

Note that in Eq. (21), the two events have common
observations of indexes (M + v − L, ..., v − 1). In order
to calculate the result S̃M+v−1

M+v−L, observations of indexes
(M + v − L, ...,M + v − 1) have been projected onto the null
space of the model matrix H, and then the resulting residuals
have been multiplied by θM which represents the shift of
expectation, due to the process failure, projected onto the null
space of H. Because all the common observations are healthy
observations, as they are acquired before the change v, their
effect is neglected when multiplied by θM . Following that, the
two events can be considered as independent, and Eq. (21) can
be written as :

P

(
M+v−1⋂
n=L

{
S̃nn−L+1 < τ

})
≤

P

({
v−1⋂
n=L

{
S̃nn−L+1 < τ

}})
· P
({
S̃M+v−1
M+v−L < τ

}) (22)

Then, from Eq. (20), we get :

Pmd(M) ≤ P
({
S̃M+v−1
M+v−L < τ

})
= PH1

({
S̃L1 < τ

})
(23)

where PH1
is the probability under H1. Based on (15), under

H1, the result S̃L1 is a Gaussian random variable with mean
a
σ‖θM‖

2
2 and variance ‖θM‖22. As a result, the worst-case

probability of missed detection can be upper bounded as :

Pmd(M) ≤ Φ

(
τ

‖θM‖2
− a

σ
‖θM‖2

)
(24)

with Φ the standard normal cumulative distribution function.
Finally, the power function β(M) of the proposed test (15),

that is the probability of detecting a failure after at most M
observations, is bounded by :

β(M) ≥ 1− Φ

(
τ

‖θM‖2
− a

σ
‖θM‖2

)
. (25)

In what follows, this lower bound will be referred to as β̃(M).

On the other hand, for a given run length R and at a given
time `, the false alarm probability is given by :

P0(` ≤ T ≤ `+R) (26)

Hence, the worst-case probability of false alarm for all ` ≥ L
can be defined as :

Pfa(R) = sup
`≥L

P0(` ≤ T ≤ `+R) (27)

The calculation of the exact value of Pfa(R) is absurd, instead
it is proposed to calculate an upper bound only. In this way,
it is possible to guarantee a false alarm rate lower than that
bound for all ` ≥ L.
The calculation will be done in two steps. First, the proof
that the worst-case probability of false alarm is indeed the
probability of false alarm at the starting point L. And then,
the second step is to determine the upper bound.

First, let us start the proof of the following equality :

Pfa(R) = sup
`≥L

P0(` ≤ T ≤ `+R) = P0(L ≤ T ≤ L+R)

(28)
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Let us denote U` = P0(T = `) for all ` ≥ L. For the first
point L, it can be clearly seen that :

UL = P0(S̃L1 ≥ τ) (29)

and that :

UL+1 = P0

({
S̃L1 < τ

}⋂
{S̃L+1

2 ≥ τ}
)

≤ P0

({
S̃L+1
2 ≥ τ

}) (30)

As all the observations of indexes (1, ..., L+ 1) follow the
same distribution under H0, then the inequality in Eq. (30)
can be rewritten as :

UL+1 ≤ P0

({
S̃L1 ≥ τ

})
= UL (31)

In a similar manner, for ` > L, we can verify that :

U` = P0

(
`−1⋂
n=L

{
S̃nn−L+1 < τ

}⋂{
S̃``−L+1 ≥ τ

})
(32)

and that :

U`+1 = P0

( ⋂̀
n=L

{
S̃nn−L+1 < τ

}⋂{
S̃`+1
`−L+2 ≥ τ

})

≤ P0

( ⋂̀
n=L+1

{
S̃nn−L+1 < τ

}⋂{
S̃`+1
`−L+2 ≥ τ

})

≤ P0

(
`−1⋂
n=L

{
S̃nn−L+1 < τ

}⋂{
S̃``−L+1 ≥ τ

})
= U`

(33)
Therefore, it is concluded that (U`)`≥L is a decreasing se-
quence. Now let us define V` = P0(` ≤ T ≤ ` + R) for all
` ≥ L. It can be seen that :

V` =

`+R−1∑
n=`

P0(T = n) =

`+R−1∑
n=`

Un (34)

Then :

V` − V`+1 =

`+R−1∑
n=`

Un −
`+R∑
n=`+1

Un = U` − U`+R ≥ 0 (35)

Consequently, (V`)`≥L is also a decreasing sequence. As a
result, the equality in Eq. (28) is proven to be correct :

sup
`≥L

V` = VL = P0(L ≤ T ≤ L+R) = Pfa(R) (36)

The second step consists in calculating the upper bound of VL.
From Eq. (29), UL can be rewritten as :

UL = 1− P0(S̃L1 < τ) (37)

Similarly for all ` > L, Eq. (32) can be rewritten as :

U` = P0

(
`−1⋂
n=L

{
S̃nn−L+1 < τ

})

− P0

(
`−1⋂
n=L

{
S̃nn−L+1 < τ

}⋂{
S̃``−L+1 < τ

})

= P0

(
`−1⋂
n=L

{
S̃nn−L+1 < τ

})

− P0

( ⋂̀
n=L

{
S̃nn−L+1 < τ

})
(38)

It follows from Eqs. (37), (38), and (34), that the worst-case
probability of false detection VL is :

VL = 1− P0

(
L+R−1⋂
n=L

{
S̃nn−L+1 < τ

})
(39)

For any two positive integers n 6= n′, it is possible to prove
that the covariance of the two Gaussian variables S̃nn−L+1 and

S̃n
′

n′−L+1 is non-negative cov
(
S̃nn−L+1, S̃

n′

n′−L+1

)
≥ 0. As a

consequence, one can immediately get :

P0

(
L+R−1⋂
n=L

{
S̃nn−L+1 < τ

})
≥
L+R−1∏
n=L

P0

({
S̃nn−L+1 < τ

})
(40)

Thus, VL is upper bounded by:

VL ≤ 1−
L+R−1∏
n=L

P0

({
S̃nn−L+1 < τ

})
(41)

Finally, based on (15), under H0, the results S̃nn−L+1 ∀n ≥ L
are Gaussian random variables with zero mean and variance
‖θM‖22. As a result, the probability of having a false alarm
α(R) after R observations is bounded by :

α(R) ≤ 1− Φ

(
τ

‖θM‖2

)R
, (42)

In what follows, this upper bound will be referred to as α̃(R).
Equations (25) and (42) emphasize the main advantages of

the proposed approach. First, the statistical performance of the
proposed test is bounded. The false alarm probability α(R)
is upper bounded which will enable to calculate a detection
threshold τ using a pre-defined false alarm rate knowing that
the application is guaranteed not to exceed. On the other
hand, the detection power β(M) of the test is lower bounded
which will allow to guarantee, for a pre-defined false alarm
rate, a minimal detection power that the application will not
decrease bellow. Second, the false alarm probability α(R)
only depends on the prescribed run-length R and the maximal
acceptable detection delay M . Last, the power function (25)
shows that the accuracy of the proposed method essentially
depends on the “change-to-noise ratio” a/σ, along with the
maximal acceptable detection delay M .
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IV. PAINT COATING INTENSITY VARIATION

A. Painting process

Wheel paint has two purposes; to protect the underlying
metal from the harsh environment to which it is exposed,
and most importantly to improve the look of the wheel.
Modern wheel coating methods consist of five main steps,
starting with the pre-treatment which removes and cleans
excess metal to form a smooth surface structure, and ending
with the topcoats which provide the surface characteristics
including color, appearance, gloss, smoothness, and weather
resistance [11]. This paper focuses on the topcoats as they are
the only visible layer.

Wheel topcoats are usually composed of several layers
of paint coatings, with a precise thickness, spread on the
whole surface of the wheel one after another [12]. They are
generally applied in the form of liquid or powder using spray
atomizers, also called spray gun nozzles [12]. The appearance
(color, gloss, texture, etc. . . ) of a coated surface greatly affects
the perception on the product quality. In fact, every wheel
manufacturer has a list of client requirements that defines
every detail concerning the final product, including a “top-coat
requirements” list that contains specifications about the color,
the gloss level, and many other aspects of the topcoats. Given
this set of specifications, any significant deviation from what
is standard or normal to the product is considered an anomaly
that has to be correctly detected. However, it is important to
note that in this context a defective process will not only affect
one wheel, but all of the following products. Therefore, a fast
and accurate detection of any anomaly, as soon as it appears,
is necessary in order to reduce the number of defective
products, thus reducing the loss. Moreover, the deviation that is
considered as anomalous is hardly distinguishable from other
normal deviations, and hence may remain unnoticed by visual
inspection.
All those points lead us to the necessity of an automatic
inspection system that monitors the variations of the topcoat
intensity, and signals the change-point with minimal delay
time. The detection process has to be fast and sufficiently
efficient in order to distinguish between a normal state and
the anomalous state.

Technically speaking, many factors influence the quality of
the coating, thus its appearance, such as temperature, paint
viscosity, solvents, etc. [11], [12] . . . . Specifically for liquid
painting, as time goes by, the viscosity of the paint in the
paint bath decreases (the paint becomes more pasty) since the
solvents are evaporating over time. This process may be faster
or slower depending on the neighboring temperature [11], [12].
To rectify the effects of this process, usually the operators tend
to increase the paint / airflow on the spray gun nozzle. These
variations in the topcoats remain in the acceptable zone in
accordance with the technical requirements. This paper focuses
on a usual problem, that is when the spray gun nozzle partially
clogs, or gets blocked, which will be translated in a sudden
change in the intensity of the topcoats.

Fig. 1: A typical example of a wheel image obtained from the
monitoring system.

B. Monitoring system

The monitoring system consists of an imaging system
placed over the conveyor belt of a wheel factory, just after
the painting process. It involves a camera that takes the image
of each produced wheel, using a proper illumination setup,
to uniformly brighten the whole surface of the wheel while
reducing light reflection artifacts. An example of a wheel
image acquired by the imaging system is shown in Figure 1.

To the purpose of monitoring the variation of paint coating
intensity on produced wheels, it is wished to consider a block
containing s pixels in the image of the wheel, over which the
mean value of all pixels is computed. The considered window
maintains the same size and position on the surface of the
wheel for all images. Then, for one image of a wheel, let
Z = {zw}sw=1 denote the window containing s pixels and
m = s−1

∑s
w=1 zw the mean value of pixels’ intensity. Note

that the behavior of the observations is independent from the
window position on the surface of the wheel.

The variation of the mean value m from a wheel image
to another describes the variation of the topcoat intensity.
Indeed, the mean value is a sufficient parameter to detect
coating failure as the change in pixel values that it causes
affects the whole surface of the wheel. Figure 2 shows an
example of series of mean pixels’ value mi for 1 000 images
of consecutive wheels without change points, with i the
image index. The observed variation in the mean values is
considered to be normal, and it is due to the reasons detailed
previously. It is shown that the mean value of observations
mi evolves smoothly.

Note that, the window Z has always the same position from
the center of the wheel, but not exactly the same position on
the wheel image. In fact, the wheels are not perfectly centered
under the imaging system, which means that from an image
to another, the position of the wheel may differ by few pixels.
In addition, the illumination system is not ideal, meaning
that the distribution of light over the whole wheel surface
is not perfectly uniform, hence some locations on the wheel
are slightly more or less illuminated than others. Therefore,
it is concluded that the variance of the variable mi is only
related to the imaging system which is not modified during
the acquisition, thus it remains constant for all observations,
whether before or after the change. Based on these factors, and
based on the behavior of the variable mi observed in Figure 2,
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Fig. 2: A typical example of variation of wheel images mean
value

the process can be considered as a non-stationary process in
the mean, with a constant variance over all the observations.

V. EXPERIMENTS AND RESULTS

In this section, five types of results are presented. First, the
proper choice of the first window length L and the degree of
the polynomial q−1 is discussed with simulation results. The
second experiment aims to study the effect of the second win-
dow length M on the performances of the proposed test. In the
third part, it is wished to examine the efficiency of the bounds
calculated in subsection III-C and to study the detectability
of the proposed test function of the abrupt change amplitude,
given a set of requirements. Next, the fourth experiment is a
study of a real case scenario with a real change point in the
observations. Finally, a performance comparison is conducted
to highlight the advantages of modeling the observations and
examine the difference in the detection criteria between our
approach and the CUSUM method.
To conduct these experiments, a data base of 500 000 suc-
cessive healthy images has been acquired using an area scan
camera installed over the production line of a wheel factory.
The acquired images are made of 2046×2046 pixels of 12 bits
depth. The procedure described in section IV has been applied
to obtain the observations mi with i = {1, 2, ..., 500 000}. The
observed standard deviation, related to the imaging system, is
σ = 22. As supposed in section IV, this parameter is assumed
to be constant during the monitoring process. However, the
variance can be changed with the acquisition conditions, for
instance, with the illumination intensity. To deal with the
problem of imaging acquisition system drift, the variance
is periodically computed (typically at the beginning of each
week). The detection problem of abrupt changes in acquisition
conditions is not addressed in this paper.

First, let us start by discussing the choice of the first
window length L, and the degree of the polynomial q − 1.
In fact, as mentioned in subsection III-B, the choice of
parameters L and q has an important role, on the one hand,
to increase the detection performances of the test, and, on
the other hand, to correctly model the paint coat intensity
process as a Gaussian process. Hence, multiple Monte-Carlo
simulations, with different values of L and q, have been
performed to correctly tune these parameters to ensure the

best performances. Two important factors are directly affected
by the change in these parameters, those are the detection
power β(M) and the accuracy of the standard Gaussian
distribution model for residuals’ rN distribution under H0.
This accuracy can be expressed using the Hellinger distance
HD between the empirical residuals rN and the theoretical
standard Gaussian distribution. Table I contains the calculated
values of β(M) and HD for values of L ranging from 50 to
1 000, and values of q−1 ranging from 2 to 10. These results
have been obtained for a maximal detection delay M = 5,
over a run length of R = 5 000 which represents about half
of a day’s production, and for a pre-defined value of false
alarm rate α(R) = 10−2. It can be observed from Table I that
for a certain polynomial degree, increasing L will lead to a
better detection performance as β(M) increases, however, the
Hellinger distance HD increases alongside which indicates a
decrease in accuracy. For large values of L, as L = 1 000,
small values of polynomial degree are not even sufficient to
correctly represent the observations under H0, which can
be seen by the increase in HD and the decrease in β(M).
Thus it is necessary to increase the polynomial degree just
to correctly model the observations. On the other side, for a
certain value of L, increasing q will lead to an increase in
the accuracy, in favor of a decreasing performance. For large
values of q, as q = 10, the accuracy increases significantly,
however, the test performance is low. To choose the optimal
values of L and q, it is important to have the maximal
detection power β(M) alongside a sufficient accuracy so that
the empirical performance matches at best the theoretical
performance study. For the values L = 200 and q − 1 = 2,
we have the best detection power β(M) = 0.9351. Then, to
better understand the relation between the Hellinger distance
and the accuracy, figure 3 represents a comparison between
the theoretical standard Gaussian cumulative distribution
function (cdf) and the empirical cumulative distribution
functions of the residuals rN for L = 200 and L = 1 000,
and with q − 1 = 2. It can be seen that for L = 200, the
empirical distribution is accurate enough compared to the
theoretical distribution, and that moving from HD = 0.0443
for L = 200 to the highest distance values HD = 0.0564
for L = 1 000 will only have a small effect on the accuracy
of the distribution under H0. Therefore, the choice of the
parameters can be made on the basis of the highest detection
power β(M) for a Hellinger distance HD lower than a
certain value after which the accuracy is considered no longer
acceptable. As a result, the correct choice of the parameters
in our application is L = 200 and q − 1 = 2, which will be
considered in all following experiments.

Secondly, it is proposed to study the effect of the second
window length M on the detection performances. The same
data base has been used to perform a Monte-Carlo simulation,
for which a simulated shift of amplitude a = 60 has been
superimposed on some of the observations. Figure 4 represents
the empirical false alarm probability α(R) and detection
power β(M) over a run length R = 5 000 for 3 different
values of the maximal allowed detection delay M = {1, 3, 5},
as a function of the decision threshold τ . It can be observed
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TABLE I: The empirical detection power β(M) and the Hellinger distance HD for different values of L and q.

First window size L

50 100 150 200 250 1 000

β(M) HD β(M) HD β(M) HD β(M) HD β(M) HD β(M) HD

D
eg

re
es

of
th

e

po
ly

no
m

ia
l
q
−

1 2 0.4005 0.0405 0.8079 0.0426 0.8481 0.0433 0.9351 0.0443 0.8741 0.0451 0.5387 0.0564

3 0.0559 0.0387 0.5135 0.0417 0.7549 0.0423 0.8020 0.0438 0.8775 0.0444 0.7049 0.0563

4 0.0455 0.0373 0.2813 0.0409 0.4185 0.0415 0.6594 0.0429 0.8052 0.0438 0.8416 0.0463

5 0.0441 0.0354 0.0601 0.0407 0.2378 0.0410 0.3493 0.0422 0.5582 0.0434 0.8706 0.0381

10 0.0040 0.0264 0.0217 0.0364 0.0523 0.0395 0.0425 0.0414 0.0524 0.0420 0.6525 0.0350
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Fig. 3: Empirical and theoretical cumulative distributions of
the normalized residuals rn with two different values of the
first window size L with polynomial degrees q − 1 = 2.

that when M increases, ‖θM‖2 increases, which affects both
the false alarm rate α(R) and the detection power β(M), as
seen in (15). However, the increase rate of β(M) is larger
than the one of α(R). Hence, the shift between the detection
power and the false alarm probability becomes larger which
implies a better detection performance, but at a larger delay
M . As a result, it can be seen that the choice of M essentially
depends on the application requirements. Depending on the
application, this test allows to either increase the detection
performance at a cost of a larger detection delay, or decrease
the detection delay at a cost of a lower detection performance.

In the third part of the experiments, and because one
of the main contributions of this paper is the design of a
change-point detection method with bounded performance
properties, it is wished first to examine the efficiency of the
bounds calculated for α(R) and β(M). Figure 5 shows the
empirical false alarm probability α(R) and its theoretical
upper bound α̃(R) for three different values of the run length
R = {50, 500, 5 000} as a function of the detection threshold
τ . The maximal delay for detection is set to M = 5. It can
be observed that the upper bound is accurate and relatively
tight. However, as the run-length increases, one can notice
that the upper bound is gradually losing its accuracy for
smaller values of false alarm. At α(R) = 10−2, the distance
between the empirical threshold and the theoretical one
obtained by the upper bound is 0.7 for R = 50, but it
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Fig. 4: Empirical false alarm probability α(R) and detection
power β(M) over a run length R = 5000 for 3 different values
of M , plotted as a function of the decision threshold τ .
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Fig. 5: Empirical and theoretical false alarm probability α(R)
over three different values of run length R, plotted as a
function of the decision threshold τ .

increases to 1.2 for R = 5 000. This is due mainly to the
fact that the observations are not totally independent. In
fact, the calculation of the upper bound of the false alarm
probability is based on the inequality in equation (40) which
is greatly affected by the independence of the observations.
When R increases, the number of events in equation (40)
increases, resulting in an increase in the difference between
the probability of their intersection (the first term (40)) and
the product of their individual probabilities (the second term
in (40)). As a result, the sharpness of the upper bound for
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rate α(R), plotted as a function of the change amplitude a.
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Fig. 7: Real example of the variation of mean value with a
change-point at index 2434.

the false alarm probability decreases. In addition, a second
factor can be the fact that the data base used to perform these
experiments is rather small to be generally accurate in the
empirical results for large values of run length as R = 5 000.
Then, in order to test the detectability of the proposed test
and the sharpness of the detection power lower bound,
figure 6 presents the empirical detection probability β(M)
and its theoretical lower bound β̃(M) for two different
values of M = {3, 5} and two different false alarm rates
α(R) = {10−2, 10−3} over a run length R = 5 000, as a
function of the change amplitude a. First, it can be seen that
the theoretical lower bound is precise and really tight for
the different parameter values. Second, for a fixed value of
the false alarm rate, when M increases, the detection power
β(M) increases accordingly. This result confirms the one
obtained in the second experiment in Figure 4.

Next, it is wished to exemplify the efficiency of the
proposed 2FLW-SEQ sequential detection method on a real
case scenario with a real change-point in the observations.
Figure 7 portrays a real case of observations when the
spray gun nozzle got partially clogged. As a consequence,
a sudden shift in the observations of amplitude a = 55 can
be seen at exactly the image index 2434. The blue plot
represents the real observations, while the red plot represents
the expectation values (8) estimated using the polynomial
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Fig. 8: Result of the proposed 2FLW-SEQ detection method
with M = 5.
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Fig. 9: Result of the proposed 2FLW-SEQ detection method
with M = 3.

model over a window of size L = 200 and a degree of
q − 1 = 2. Because it is aimed to be as close as possible
from the real practical requirement that corresponds to the
specific application of paint coat monitoring, the false alarm
rate is set to α(R) = 10−3 over a run length R = 5 000. This
will result in a detection threshold of τ = 10.12 for M = 5
and a threshold of τ = 8.2 for M = 3. Figure 8 illustrates
the result of the proposed 2FLW-SEQ method with M = 5.
It can be seen that the change point is detected at the index
2438 which means a delay of exactly 5 defective wheels.
Then, the same experiment has been performed for a maximal
allowed delay of M = 3 where the detection power is much
lower than the previous case of M = 5, as seen in Figure 6.
Figure 9 illustrates the corresponding result where it can be
seen that the change-point has been missed.
Note that, usually when the change is detected, the sequential
process stops. However to better illustrate the results of
the test, the sequential procedure was allowed to continue.
It is shown in Figure 7 that after the change occurs, the
observations return to a state similar to the one just before the
change occurred. Then, just after the change, the sequential
procedure will re-operate under the hypothesis H0, and the
results S̃ii−L+1 will return to have a Gaussian distribution
with zero mean and a variance ‖θM‖22, as it can be seen in
Figures 8 and 9.

Last, but not least, the first goal is to investigate the advan-
tages of modeling the paint coat intensity process to deal with
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Fig. 10: Empirical ROC curves for the proposed 2FLW-
SEQ method and the CUSUM method with and without the
polynomial model, computed over a run length R = 5000,
with a maximal detection delay M = 5 and change amplitude
a = 60.
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Fig. 11: Average detection delay as a function of the average
run length to false alarm for the proposed 2FLW-SEQ method
and the CUSUM method with polynomial model with a max-
imal detection delay M = 5 and change amplitude a = 60.

its non-stationarity. To this purpose, it is proposed to compare
the performance of the original 2FLW-SEQ method presented
in this paper with a classical sequential detection method, more
precisely the well-known CUSUM, in two different scenarios.
In the first scenario the polynomial model is used to represent
the expectation of the last L observations, while in the second
scenario only the mean value of the last L observations is
considered. In addition, the proposed 2FLW-SEQ is included
in the comparison in order to show its efficiency. Note that
when the polynomial model is used, the optimal parameters
obtained from the first part of the experiments are considered,
i.e. L = 200 and q−1 = 2. However, for the CUSUM without
a model, multiple simulations with different values of L have
been conducted and lead to the choice of L = 20 which is
the best in terms of detection power. Figure 10 presents the
empirical ROC curves for the proposed 2FLW-SEQ method
and the CUSUM method with and without the polynomial
model, computed over a run length R = 5000, with a maximal
detection delay M = 5 and change amplitude a = 60.
It can be seen that using the polynomial model actually
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Fig. 12: Empirical detection power β(M) as a function of
the average run length to false alarm for the proposed 2FLW-
SEQ method and the CUSUM method with polynomial model
with a maximal detection delay M = 5 and change amplitude
a = 40.

improves the performance of the CUSUM method. Figure 10
also shows that the proposed 2FLW-SEQ method outperforms
the CUSUM method even when using the polynomial model.
Indeed, the CUSUM method has proven many times to be
optimal as mentioned in section III-C, however, this optimality
is related to the average detection delay. To better understand
the difference in the detection criteria under which each of
the proposed 2FLW-SEQ method and the CUSUM method
operates, two sets of simulations are conducted.
Figure 11 represents the average detection delay (ADD) as a
function of the average run length to false alarm (ARLFA) for
the proposed 2FLW-SEQ method, with a maximal detection
delay set to M = 5, and for the CUSUM method with
polynomial model with q − 1 = 2 and change amplitude
a = 60. It can be seen that in this context, the CUSUM has
proven to be optimal and, hence, outperforms the proposed
2FLW-SEQ method. On the other hand, as noted in the
section III-C, the aim of the proposed 2FLW-SEQ method
is to minimize the worst-case probability of missed detection
under constraint on the worst-case probability of false alarm
for a given run length. To highlight this criteria, figure 12
represents the empirical detection power β(M) as a function of
the ARLFA for the same sequential methods and with a change
amplitude a = 40. The smaller value of the change amplitude
is considered to emphasize better the difference. Obviously,
figure 12 shows that, in this context, with the increasing values
of the ARLFA, the proposed 2FLW-SEQ method outperforms
the CUSUM method in terms of detection power. Indeed, it is
well known that minimizing the average detection delay does
not necessarily lead to a higher detection power under a given
maximal delay, or to a small probability of missed detection.

VI. CONCLUSION

This paper proposes a method for online monitoring of a
non-stationary process in the mean with a constant variance.
The CUSUM method is modified to adapt to the operational
requirements of the industrial context in order to control the
false alarm probability over a fixed run length and for a given
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detection delay. Because the process that is under monitoring
is non-stationary in the mean, a linear parametric model is
proposed to reject this nuisance parameter. For wheels coating
process studied in this paper, the mean value of pixels from
all wheel images are used to measure the coating intensity.
Numerical results on a large set of images show the accuracy
of the proposed model, the efficiency of the proposed detection
method, and the sharpness of the statistical performances
theoretically established.
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