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Abstract: We report a detailed investigation on the second harmonic generation (SHG) emission
from single 150 nm diameter non-centrosymmetric gold nanoparticles. Polarization-resolved
analysis together with scanning electron microscopy images shows that these nanostructures
exhibit a unique polarization-sensitive SHG that depends strongly on the particle’s shape. An
analytical approach based on multipolar analysis is introduced to link SHG properties to the
nanoparticles’ shape. Those multipolar modes can be probed using polarization-resolved SHG.
This multipolar analysis offers a physical picture of the relation between shape (size, symmetries,
defects, etc.) and nonlinear polarized optical efficiency.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

It is well known that SHG (Second Harmonic Generation) is forbidden in centrosymmetric
bulk materials [1–4]. The crystalline lattice of noble metal nanoparticles is, up to a good
approximation, centrosymmetric. So, the SHG is locally emitted from the surface where the
centrosymmetry is broken [5–7]. The total SHG emission of the nanoparticle results from the
coherent addition of these local SHG emitters. Consequently, the overall shape of the nanoparticle
plays a significant role in engineering an efficient SHG response. Numerous studies on SHG have
focused on noble spherical nanoparticles in which the role of the morphology deviation from
ideal spherical shape has been investigated [4, 8–11]. These spherical structures usually give low
SHG efficiencies. The shape of the nanoparticle can be optimized to improve SHG efficiency
but this feature has remained explored sparsely [12]. On the other side, a large variety of shape
has been explored in different studies, such as sharp metal tips [13], periodic nanostructured
metal films [14], split-ring resonators [15], T-shaped [15], L-shaped nanoparticles [16, 17],
noncentrosymmetric T-shaped nanodimers [18].

In this article, we report investigations on efficient SHG emission by single metallic threefold
symmetry nanoparticles, branched stars and nanotriangles, inspired by previous studies on
octupolar molecules possessing high hyperpolarizability. It is an interesting textbook case to
address the link between shape, size and nonlinear optical properties in these nanoparticles. It
has been proven that this high hyperpolarizability is obtained due to the threefold symmetry of
the molecular structures [19–23].

A phenomenological model to understand the nonlinear response of the nanoparticles has been
constructed. In this model, SHG responses are generated from the nonlinear sources located at a
given distance from the particle center. Consequently, this model takes into account the symmetry
of the particles as well as its spatial extension, which allows to compare SHG experimental
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results with SEM images.
Finally, we develop an analytical approach to physically interpret the experimental results in

terms of multipolar contributions. Various experiments have been conducted to measure the
multipolar radiation from nanoparticles [24–27] but none of them linked it, to our knowledge,
to the efficiency of the nonlinear response nor did use an adequate definition of multipoles as
is demonstrated in section 4. The fitting models did not discuss the role of the point spread
function (PSF) and the overlapping of the dipole radiation transmitted through the optical system.
The link between the model and the system symmetry was also not discuss in-depth, and less
accessible. Linking the shape of the nanoparticles to their optical properties through their
multipolar radiations offers a clear picture of the relation between geometry and nonlinear
polarized efficiencies. This will help to engineer nanoparticles with an optimized shape to
enhance a given property. While the overall size of the particle and its symmetry dictates which
multipoles are likely to be important in the radiation, the weight of each multipole is controlled
by the shape. This explains why stars and triangles, of similar size, material and symmetry, have
very different nonlinear behaviors. One would ideally engineer a perfect multipolar emitter to
improve nonlinear properties and this can be quantitatively achieved by measuring the multipolar
radiation associated with a given shape. It is interesting to note that, when stars possess shape
defects, their SHG efficiency is not as intense and becomes comparable to triangles ones. The
multipolar description of the radiation for a given shape can highlight how robust the optical
properties are regarding deviations from the ideal shape.

2. Second harmonic generation efficiency of nanostars

Pure gold nanoparticles have been fabricated by electron beam lithography (EBL), with a branch-
structure or a triangular structure, see Fig. 1(a). Single particles were identified by scanning
electron microscopy (SEM) image and marked systematically, Fig. 1(a). Their nonlinear optical
properties are carried out by polarized SHG microscopy. Figure 1(b) defines the laboratory frame
of coordinates and the angle defining the linear polarization of the incoming pulse. Polarimetric
graphs (polarization resolved emitted SHG intensity along the X and Y components, Fig. 1(c))
and SHG imaging, Figs. 1(d) and 1(e), provide information on the SHG efficiency of single
particles as well as their nonlinear behaviors. More details on the experimental setup are given in
Appendix A.

We have investigated the SHG efficiency of nanostars and compared it with triangles and
cylinders. Figure 2 shows the measured values of the off-resonant second-order susceptibility
χ(2)(0) for nanostars, nanotriangles and nanocylinders. Details on the measurement of resonant
and off-resonant second-order susceptibilities are also provided in appendix B.
We obtain χ(2)(0) ∼ 24 pm.V−1 for the nanostars, 17 pm.V−1 for the nanotriangles and

3 pm.V−1 for the nanocylinders. Nanostars and nanotriangles exhibit much higher SHG χ(2) than
centrosymmetric nanocylinders of the same excitation volume. This indicates an improvement of
the SHG efficiency by using non-centrosymmetric shapes. Interestingly, even though nanostars
and nanotriangles both possess threefold symmetry, nanostars exhibit higher χ(2) values than
nanotriangles. We will show that this can be interpreted in terms of better spatial confinement of
the incident field at the tips leading to a stronger multipolar emission from nanostars. As shown
in Appendix B, nanostars susceptibilities magnitudes can be much higher than in KTP when
one takes into account the volume of excitation of the nonlinear material. Near resonance, the
susceptibilities also increase importantly.

Unlike molecules, gold nanoparticles are not subject to bleaching even under resonant excitation
conditions, and photo-damage is most likely to occur from pure thermal effects. Taking into
consideration that thermal effects can be minimized under adequate short pulse excitation
conditions, we can argue that the use of gold nanoparticles benefits from more robust conditions,
together with high signal to noise ratios.
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Fig. 1. (a) Scanning Electron Microscopy (SEM) images of nanostars. The metallic
nanoparticles have been lithographed far enough from each other with the purpose of
studying them independently. (b) Geometry used for positioning the nanoparticles in the
sample plane (X,Y) for polarization resolved and efficiency measurements. (c) Schematic of
the polarization resolved SHG experiment. (d) SHG scanning image of an array of nanostars.
The scale represents the sum of the SHG signals over 32 incident polarization angles, in
counts/100 µs, pixel size: 60 nm. (e) Emission spectrum from a single nanostar. Integration
time: 1s.
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Fig. 2. Histograms of the off-resonant χ(2) for nanocylinders, nanotriangles and nanostars,
obtained by comparison with a bulk KTP crystal measurement (see Appendix B). 45 particles
were measured for each shape.

The important difference in the SHG intensity of nanostars, nanotriangles and nanocylinders
shows that the shape of the object is a crucial parameter: the factors that explain the high nonlinear
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efficiency of threefold symmetry nanoparticles embed both symmetry and spatial extent effects.
In the next section, a model describing those nonlinear responses and taking into account the
shape variations is developed.

3. Modeling the nonlinear response of stars

In previous work on similar structures [28], we showed from numerical Finite Difference Time
Domain calculations that, under linearly polarized excitation, a local confinement of the field
scattered by branched particles occurs at their tips. This confined field was, moreover, strongly
polarized along the tip direction, supporting the choice of linear induced dipoles along it.

We model the polarization resolved responses of nanostars by locating their induced nonlinear
dipole sources close to the star tips. Three nonlinear sources, linked to the incoming field via the
susceptibility tensors β1, β2, β3, are positioned at a distance h from the center of the particle
(Fig. 3). The hyperpolarizability βi tensors exhibit three independent tensorial components [3,29]:
β↑↑↑, β↑⊥⊥ and β⊥↑⊥ where the symbol ↑ denotes the direction parallel to the tip of the star and
⊥ is its perpendicular direction within the plane of the particle. With both theory and experiment,
W. Hübner et al [30, 31] showed that the tensorial element β↑↑↑ dominates over the elements
β⊥↑⊥ and β↑⊥⊥. We therefore consider as a first approximation that each induced dipole thus
possesses one single tensorial coefficient β↑↑↑ along each arm direction. Within this model, the
nonlinear polarization at the tip j is given by:

µ j↑ = ε0 β↑↑↑ · (E
(ω) · e j↑) · (E

ω · e j↑) · e j↑ (1)

where e j↑ is the unit vector parallel to the tip j and E(ω) is the incoming electric field. With
this model, the field enhancement due to the resonance of the nanoparticle would give a scalar
modification of each multipole (the symmetry of the field is only affected by the symmetry of
the nanoparticle): this does not affect the model. The radiation of the three induced dipoles is
collected by a collection objective giving rise to three fields in the image plane (Fig. 3).
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Fig. 3. The radiation of three SH induced dipoles through the collection objective of
microscope giving rise to the three SHG field images.

The total SHG signal, collected by the detector in the image focal plane of the microscope, is
given by independent contributions when the dipoles separation is large enough such that their
images do not overlap (see Appendix C).
We use exact forms of the imaged electric fields to calculate the total detected signal on the

detector (see Appendix D). The imaged field of a radiating dipole through an aplanetic optical
objective is known [32–35] and these expressions are used to calculate the signal. An overlap
parameter c is introduced to weigh the importance of this overlap (see Appendix E). This overlap
parameter can be expressed as a function of the distance h separating the three dipoles from the
center of the star. c also depends on the parameters of the optical microscope, the magnification
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M and the numerical aperture N A = n sin θm (θm is the half-aperture angle):

c =
4
π

∫ 1

0

sin(
√

3 M a h
√

1 − v2)
√

3 M a h
dv (2)

with a = kθm
M and k is the wavevector of the nonlinear emission in the medium used for imaging.

The total SHG signal stotal, defined as the total intensity integrated over the photodetector
surface, is found experimentally to be independent of the polarization of the exciting field. The
model developed here shows it too, extending the evidence for the linear response in previous
studies [36]. In order to quantitatively determine c from experimental data, we have used a
polarization beam splitter to measure signals projected along the X (sx) and Y (sy) axes of
the sample plane. These contributions to the signal are plotted in Fig. 4 as a function of the
polarization of Eω(α), α being defined as the angle between X and Eω . The polarization-resolved
signals vary strongly with the c parameter. When h is close to 0 (three dipoles located at the
center, Fig. 3(a)), radiations fully overlap and the resulting polarization dependence exhibit
characteristic lobes of symmetric threefold structures in the dipolar approximation [37]. When h
increases (Figs. 4(b)–4(f)), the overlap of the three dipolar images decreases and spatial phase
delay effects intervene in the signal build-up. The signal thus contains partial spatial incoherent
contributions and, consequently, an opening of the lobes appears. When the dipolar images
do not overlap, the signal loses its sensitivity to the nanostructure threefold symmetry. SHG
polarization responses are therefore highly informative about both the symmetry, the size and the
shape of the nanoparticles.

4. Discussion

4.1. Comparison of modeling with experimental results

Experimental SHG polarization responses were recorded for a large quantity of single nano-stars.
The polarization responses show deviations from particle to particle. About half of the whole
investigated population exhibit a pure four lobes polarization dependence for both sX (α) and
sY (α), whereas the rest of the population exhibit just two lobes. The SEM images corresponding
to the measured particles were also investigated, and show various shapes deformations. A
careful check of the SEM images of recorded particles before and after SHG measurement shows
that shape deviations occur only during the fabrication processes, i. e. the SHG measurement
does not damage the particles. Comparing each shape of the nanoparticles and its SHG polar
response, we observe that when a particle loses its threefold symmetry, even with a slight
deviation, its polarization response exhibits a shape with two lobes. On the other hand, the
particles possessing a four lobes polar responses are the one whose geometry is not deformed
from the ideal three-branched star shape.

The symmetry of a nanostar can be lost in multiple ways: difference in arm length or angular
deformations. The model developed in the previous section is therefore not sufficient to describe
the variety of imperfections and we introduce a second model, defined in Fig. 5: three different
dipoles of strengths β1, β2 and β3 with angles ν1 and ν2 between the dipoles are considered.
Moreover, an angle ϕ is included to describe an overall rotation of the object in the (X,Y) plane
(see Fig. 5(a)). The ϕ angle thus describes the orientation of a given nanoparticle in the laboratory
frame while the α angle indicates the direction of the incoming field polarization.
Fitting results show a good agreement between the second model and the experimental data.

The fitting of both sX (α) and sY (α) were performed at the same time, using the same fitting
parameters as described in the models above. Note that the use of two polarizations allows
the determination of 8 independent parameters, which is consistent with the choice of the
unknown fitting parameters in the models. The fitting parameters show that four lobes angular
patterns are obtained when the threefold symmetry is present (allowing slight angular deviation).
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Fig. 4. SHG signals as a function of the polarization angle along the X and Y axes (sX in
blue and sY in red) with various values of c corresponding to the distance h from the center
of star to the position where the SH induced dipole sources located. Two lobes polar patterns
are a signature of non-overlapping signals whereas four lobes ones denote fully overlapping
signals, typical of a threefold symmetry [37].

Comparison with the SEM images (Fig. 5) confirms this observation. The threefold symmetry
of the nonlinear induced dipoles is slightly modified for nanoparticles deviating from a perfect
shape. Figure 5(b) shows an example of a nanostar which SEM image exhibit a clear deviation
from the threefold symmetry. The SHG polarized responses can be explained by tips of different
nonlinear efficiencies as well as orientation. In this example, the nanostar loses its threefold
symmetry since one arm is visibly larger than the two other ones.
The strength of the dipoles efficiencies β1, β2 and β3 are related to the confinement of the

linear excitation field in the structure (governed by both tip arm and tip end shape), while
their orientation is clearly related to the symmetry of the nanoparticle. Angular patterns from
triangle-shaped nanoparticles can also be fitted with our three-dipoles models, supporting the
fact that the symmetry of the structure is strongly affecting the SHG polarized response.
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Fig. 5. (a) Schematic of the two fitting models. Model 1: Three dipoles of strength β
located at a distance h from the center and separated by 2π

3 . Model 2: Three dipoles of
different strengths β1, β2 and β3 and arbitrary angles ν1 and ν2. Fitting results obtained
on the data of two typical nanostars (b), (c) and two typical triangles (d), (e). Particle (b)
and (d) have an almost perfect threefold symmetry while (c) and (e) are deformed. Fitting
parameters from the models are given in Appendix, table 2.

4.2. Direct symmetry read-out: introducing multipolar description

The experimental results obtained on nanostars and nanotriangles are properly fitted using the
model of the previous section. This model has permitted us to understand the high sensitivity of
the response to the shape of the nanoparticle. This possibility to tune the polar response of a
nonlinear emitter thanks to its shape is new compared to previous works on octupolar molecules
and offers new engineering possibilities. For example, the insensitivity of the polar response is
strongly due to the symmetry of the object [28]. This is a non-trivial property which depends on
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the nonlinear order of the interaction with the nanoparticle.
However, even if this model respects the symmetry of the nanoparticle, it does not highlight

the influence of the geometry of the object since it is not treated as a whole but as a collection
of dipoles. In particular, subtle differences between triangles and nanostars are not necessarily
visible from such analysis. Moreover, it is possible to describe in principle any kind of particle
shape by choosing an appropriate set of dipoles distribution, but this choice would not make the
physical interpretation much clearer. It is then interesting to treat the object as a whole with a
unique response tensor which would include the full symmetry of the nanoparticle directly.

For punctual objects, expansion of the hyperpolarizability in irreducible parts [38] has shown
that the high nonlinear efficiency of molecules was due to an important octupolar tensor part.
Although multipolar elements play an important role in the nonlinear response, radiations from
these molecules are still purely dipolar. However, a nanoparticle is an extended object and the
richness of its physics is due to its spatial extension and shape. Therefore, one cannot just simply
use a local irreducible formalism to describe its nonlinear response. It can be shown that, as
the size of the nanoparticle increases, higher multipolar radiations appear. To quantify those
radiations, the radiated electric field needs to be projected on the basis of electric and magnetic
vector spherical harmonics [39] which are defined in the following way (in spherical coordinates):

ΨJM
m (r, θ, ϕ) =

1√
J(J + 1)

jJ (kr)LYJM (θ, ϕ) (3)

ΨJM
e (r, θ, ϕ) =

i
k
∇ ∧ ΨJM

m (r, θ, ϕ) (4)

Where YJM are the scalar spherical harmonics, L = 1
i (r ∧ ∇) is the orbital angular momentum

operator and jJ is the spherical Bessel function of order J. This set of functions constitutes a
basis for radiation from any source of the Helmholtz equation. The first order J = 1 corresponds
to the usual electric and magnetic dipolar radiations and the higher orders are the quadrupolar
(J = 2) and octupolar (J = 3) orders. It should be noted that in this formalism, in contrast with
the previous section, this dipolar radiation is the rigorous one in electrodynamics which should
not be mistaken with a doublet radiation. The former one is always strictly a dipole while the
latter has higher multipolar components in near-field.
To explicitly express the impact of symmetry on the measured SHG signals, we define the

multipolar coefficients that are obtained by a direct projection of the current distribution in the
following way:

JJM
i (c) =

∫
J(c, r) · ΨJM

i dV (5)

Where i refers to m or e and J(c, r) is the current distribution generated by the three punctual
dipoles according to the model of section 3. The norm of an irreducible tensor TJ is defined
as [40]

∑
M (−1)MTJMTJ−M . Then, the norm of the coefficients over a whole subspace is

calculated and normalized in order the measure the relative multipolar contributions.

JJ (c) =

∑
iM (−1)M JJM

i (c)JJ−M
i (c)∑

JiM (−1)M JJM
i (c)JJ−M

i (c)
(6)

Table 1 shows that, in the perfect threefold symmetry model, the radiation has to be described
using more and more multipolar orders as the size of the nanoparticle described by the increases.
Indeed, when the particle has no spatial extension (h = 0) only a dipolar radiation is emitted as it
is observed in the molecular case. Moreover, for the size of the nanoparticle considered, only
three orders of the multipolar expansion are necessary since the J = 4-pole does not appear for
small nanoparticles. By comparing SEM images, SHG efficiencies and polarization resolved
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Table 1. Relative weights of the different multipole orders for various values of the nanostar
size h. The model depends on three identical dipoles oriented in a threefold symmetry
structure and a variable distance from the nano-star center.

Multipolar orders JJ (c) Dipole Quadrupole J = 3-pole J = 4-pole

c = 1 (h = 0) 1 0 0 0

c = 0.8 (h = 50 nm) 0.81 0.18 0.01 0.

c = 0.6 (h = 70 nm) 0.66 0.30 0.04 0.

c = 0.4 (h = 89 nm) 0.52 0.40 0.08 0.

c = 0.2 (h = 108 nm) 0.39 0.47 0.14 0.01

responses, we observe that particles with a high nonlinear efficiency and an almost perfect
threefold symmetry are also the ones displaying a multipolar radiation pattern.

Multipolar contributions obtained for nanotriangles and nanostars from experimental data and
for all models are given in the Appendix F for the two models presented here. The first model
which considers three equivalent dipoles separated by 2π

3 has been useful to describe an ideal star
but does not provide excellent fits on the real nanostars. This is due to the deformation of the
nanostars and then, a second model has been proposed to improve it by allowing the dipoles to be
oriented freely. It gives a better fit and then the polar responses are sensitive to deviation in the
orientation of the dipoles. The multipolar distribution becomes dependent on the angle α of the
incoming field polarization. In Fig. 5, we provide the multipolar weights for four nanoparticles
using the imperfect nanoparticle model at the angle that maximize the quadrupolar contribution.
This is done by projecting the three dipoles obtained by the data fitting onto the basis of electric
and magnetic vector spherical harmonics at the nanoparticle center and then by taking the norm
defined in Eq. (6). We observe that triangles always have a dominant dipole contribution to
their radiation, explained by a stronger deviation from an optimal multipolar structure. One can
observe that the star 1 possesses a much more important quadrupolar part than the star 2. On the
other side, the multipolar distribution of triangles is quite robust to shape deformation although
they do not have a great SHG efficiency.
In triangles, the emitting dipoles effective locations are closer to the center of the particle

center and generate mainly dipole radiation. The sum of multiple dipoles on top of each other
gives in general dipole radiation. In contrast, nanostars having an almost perfect symmetric
threefold shape have a dominant quadrupolar contribution (the asymmetry of the real star creates
a non-constant polar response). However, nanostars that deviate strongly from the ideal shape do
not have this property and the dipolar contribution becomes dominant.

5. Conclusion

Nonlinear plasmonics is a rather young field that offers the opportunity to design future nonlinear
optical components with improved integration and ultrafast response [41]. However, a complete
understanding of the link between overall geometry and nonlinear responses is still lacking. The
multipolar analysis presented in this article provides a framework to fill this gap and to optimize
nonlinear responses. The models presented here use a discrete set of radiating dipoles. Although
correct when using enough dipoles [42], the multipolar nature of the problem suggests that a
description of the radiation as a sum of multipole located at the origin of the nanoparticle would
provide more physical insights.
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Experimental data indicate that the high SHG efficiency of threefold nanostar is due to their
strong quadrupolar radiations. This property is lost for nanotriangles or deformed nanostars that
have optical properties dominated by their dipolar radiations. The nonlinear optical properties
can be linked to the nanoparticles’ shape through a rigorous multipolar framework. Further
developments on the interplay between multipolar radiation and nonlinear optical responses can
thus help to design nanoparticles with desired properties. Theoretical works [43] together with
continuous technological progress [44] will help designing efficient nonlinear nano-emitters
based on their multipolar properties as it was done for molecular crystal in the past.

Appendix A: Experimental setup

Nanostars were fabricated on glass substrates by electron beam lithography and were imaged
using a scanning electron microscope (SEM) [45] as can be seen in Fig. 1 in the main text. 5 ×
5 square patterns of 6 µm × 6 µm size with inter-pattern distance of 18 µm were prepared, in
which a single pattern consists of 5 × 5 gold particles with an inter-particle distance of 1.5 µm in
two perpendicular directions, allowing to investigate them individually. Nanotriangles (150 nm
of edge length and 50 nm thickness) and nanocylinders (130 nm diameter and 60 nm thickness)
were also prepared to compare the SHG efficiencies.

Nonlinear optical measurements of nanostars were carried out by an inverted two-photon
excitation microscope [46] represented in Fig. 1(c) in the main text. A mode locked Ti: Sa
produces 150 fs pulses at a fundamental wavelength of 800 nm with a 80 MHz repetition rate.
The laser beam is focused on the sample by a high numerical aperture water immersion objective
(×40, NA=1.15), leading to a lateral optical resolution of about 300 nm. The SHG emitted by
the sample is collected by the same objective, spectrally filtered around the second harmonic
wavelength (400 nm) by visible band pass and interference filters. The signal is then directed
to a set of two photo-multipliers of large size, working in the photon counting mode, along
two perpendicular polarization directions by means of a polarizing beam splitter. The collected
SHG signals are denoted sX and sY . The polarization analysis is done by rotating the incident
fundamental polarization in (X,Y) sample plane while measuring the optical SHG responses in
the two X and Y directions. One image was recorded for each linear incident polarization angle α,
varied between 0◦ and 180◦ relative to the X horizontal sample direction, in 32 steps. Collection
over the full 360◦ has not been carried out in order to minimize damages on the nanoparticles.
This method permits to obtain a collection of images corresponding to multiples angles of the
incident linear polarization. Typically, an image of the 9 × 9 µm2 sample (5×5 particles) takes
less than one minute of acquisition. The image size is 150 × 150 pixels and the dwell time per
pixel is around 100 µs. The polarimetric SHG responses for each single particle of this array are
then plotted on polar graphs by averaging the sX (α) and sY (α) signals on an area of 10×10 pixels
around the center of the nanoparticle.
Figure 1(d) in the main text depicts the image that is retrieved from the total signal sX (α) +

sY (α) summed over the 32 incident polarization angles α as defined in Fig. 1(b) in the main text.
The particles are identified by bright diffraction-limited spots. The panel (e) shows a typical
two-photon excited emission spectrum of a single nano-star placed at the center of the focal spot
and directing its emission to a spectrometer at the exit of the microscope. The emission spectrum
shows a very strong SHG emission at 400 nm, sufficiently well separated from the two-photon
luminescence of the nanoparticle centered at 550 nm.

Appendix B: Nonlinear coefficients estimation from a bulk KTP comparison

We analyze the SHG efficiency of the nanoparticle by comparing it to a reference Potassium-
Titanyl-Phosphate (KTP) crystal. KTP has a nonlinear χ(2)333=34 pm/V along its 3-labeled unit
cell direction in off-resonance conditions [47].
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The final expression for the SHG intensity induced by an incident field E (ω) field can be
expressed as

I(2ω) = C. (Vexc)
2 . (χ(2))2 . (I(ω))2 (7)

Where C is an experimental constant containing collection efficiencies and I(ω) is the incident
intensity in the excitation volume.
We write Eq. (7) for nano KTP as

I(2ω)KTP = C. (Vexc-KTP)
2 . (χ

(2)
KTP)

2 . (I(ω)KTP)
2 (8)

In the present experiment, the Y axis of the macroscopic coordinates is set along the KTP axis
"3". Since χ(2)333 is much larger that the other components of the KTP susceptibility [48], we can
approximately consider that χ(2)KTP ≈ χ

(2)
YYY .

Because the nanoparticles volume is smaller than the excitation volume, the measured SHG
is created by a fraction of the energy of the incoming field. Thus, to make the comparison
possible with a KTP crystal (that can use the full excitation volume), we take into account that
only a fraction of the energy of the incoming field is used in nanoparticles, this fraction being
proportional to the ratio between the excitation volume and the volume of the nanoparticle. Thus,
the SHG intensity (sum of average intensities collected in X and Y directions) is given by:

I(2ω)particle = C. (Vexc-particle)
2 . (χ

(2)
particle)

2 . (I(ω)particle)
2 (9)

From Eqs. (8) and (9), we deduce the value of second order susceptibility of nanoparticle

χ
(2)
particle = χ

(2)
YYY,KTP .

√√√√ I(2ω)particle

I(2ω)KTP

.
I(ω)particle

I(ω)KTP

.
Vexc-KTP

Vexc-particle
(10)

In practice, I(ω)KTP and I(ω)particle are the measured SHG photons counts for an incident polarization
alongY, and along the detector analyzing the emission in theYdirection. Results for nanocylinders,
nanotriangles and nanostars are given in Fig. 6.
According to the previous discussion, our experimental setup gives the following values for

the excitation volume and KTP excited volume:

• Nanoparticles’ lateral sizes are smaller than the illumination spot size. Particles do not
probe the whole cross section of the excitation laser beam in the sample plane as in the
case of KTP crystal. In the lateral dimension, the nanoparticles surface is 10 000 nm2

whereas, in KTP, the excitation occurs over the whole surface, that is 70 000 nm2 (the
diameter of the nonlinear excitation point spread function is about 300 nm).

• In the transverse direction, the phase matching conditions occurring in the backward
detection direction are considered. The particles emit SHG from their whole volumes and
radiate coherent SHG over their 50 nm heights. The KTP crystal, excited over the whole
point spread function length (about 700 nm), will undergo coherent build up conditions
which will limit the interaction length at the crystal surface to the coherence length of the
backward SHG emission process. The calculation of this coherence length for the 800 nm /
400 nm conversion process uses the backward phase matching wave vector difference [49]:

4 k = 2 kω + k2ω = 2
2 π
λ
(nω + n2ω) and

4k lcoherent
2

=
π

2
(11)

(with λ = 800nm, nω = 1.84465, n2ω = 1.93828 [50]. This leads to a coherence length of
53 nm. Considering that the SHG coherent build up takes place over a 53 nm length, this
leads to an interaction volume Vexc−KTP of diameter 300 nm and height 53 nm.
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Table 2. Parameters describing the susceptibilities of nanostars, nano triangle and nanocylin-
ders obtained from experimental fits.

Parameters λmax M(Ω) γ (Hz)

nanostar 800 nm 12.8 1.85 × 1014

nanotriangle 800 nm 11.8 2.02 × 1014

nanocylinder 640 nm 6.2 4.69 × 1014

Fitting the extinction spectra with Lorentzian as discussed in the main text gives the parameters
in table 2 to describe the resonant behavior of the nonlinear susceptibility.

Figure 7(a) shows the histogram of the obtained second order susceptibility χ(2) deduced from
the SHG intensities measured along the Y axis (as defined in Fig. 1(b) of the main text) for
isolated particles corresponding to the direction of a branch. The χ(2) values are determined
following the methodology presented here, and using bulk KTP crystal as a reference value
(34pm/V).

Fig. 6. Histogram of intensities collected from a population of 45 individual nanostars (top),
nanotriangles (middle), and nanocylinders (bottom), with an incident averaged power of 0.4
mW at the focal spot of the objective. The obtained average and standard deviation values
are: (140 090 ± 52 200) counts/s (nanostars), (84 800 ± 27 800) counts/s (nanotriangles), (1
520 ± 1 040) counts/s (nanocylinders).

After wavelength dependence correction, the off-resonant χ(2)(0) value is seen to be roughly
an order of magnitude lower than the one obtained by excitation at 800 nm (Fig. 7(a)).
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Fig. 7. (a) Histogram of the nonlinear coefficients χ(2) obtained by comparison with a
bulk KTP crystal measurement (see text). (b) Histogram of χ(2) values corrected from the
resonance to non-resonance factors obtained for the nanoparticles.

Appendix C: Dipole imaging through an optical system

The electric field at a point ®r of an arbitrarily oriented electric dipole located at ®rn with dipole
moment ®µ is defined by the dyadic Green’s function GPSF (®r) as [33, 35]:

®E(®r) =
ω2

ε0 c2 G(®r, ®rn) • ®µ (12)

Where ω is the frequency of the incident light. We choose the dipole to be located at the origin
(the focal point) ®rn = ®0 and surrounded by a homogeneous medium of index n0. The Green’s
function GPSF expression is found in [33,35]. In the imaging condition of this experiment, the Z
component of the electric image field of a dipole is much smaller than the X and Y components.
Then, by using the paraxial approximation, some tensorial elements of the PSF are neglected.
Finally, the expression of dyadic Green’s function GPSF is:

GPSF (r) = K
©«

A0(r) 0 0

0 A0(r) 0

0 0 0

ª®®®®¬
(13)

K is a constant characterizing the optical setup. The function A0(r) is given by:

A0(r) = 2
M θm

k r
J1(

k r θm
M
) (14)

Where NA = n0 sin θm is the numerical aperture NA of the objective lens, M is the magnification
factor and k =

2 π
λ

is the wave vector.
If the dipole ®µ is located in the focal plane at position ®rn = (xn, yn, zn), out of the focal point
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of the objective lens, the electric field response of this dipole is:

®E(®r − M ®rn) =
ω2

ε0 c2 [ GPSF (®r) • ®µ] ∗ δ(®r − M ®rn) (15)

We assume that the induced nonlinear dipole sources are located near the tips of the nanostars.
Each second harmonic dipole is treated as a point dipole with hyperpolarizability β. Each
dipole is attached to one local coordinate in which ®e↑ and ®e⊥ are the unit vectors parallel and
perpendicular to the arm of the nanoparticle respectively. From Eq. (1) in the main text, the
dipoles SHG polarization along the nanoparticles’ arms is:

µ
(2ω)
j↑
(α) = ε0 βj↑↑↑. [E

(ω)
j↑
(α)]2 (16)

The second harmonic response of each SH induced dipole in the image plane is:

®E (2ω)j (®r) =
ω2

ε2
0 c2

[
G(®r) • ®µ(2ω)

j↑

]
∗ δ(®r − M ®rn) (17)

The convolution operation is used to shift the signal from the center of the image plane to the
position corresponding to the location of the dipole in focal plane. The amplitude of the signal
does not change when a dipole is translated in the focal region. The imaged field for each SH
induced dipole is:

®E (2ω)j (r, α) = K
ω2

ε2
0 c2

©«
A0(r) 0 0

0 A0(r) 0

0 0 0

ª®®®®¬
©«
µ
(2ω)
j↑X
(α)

µ
(2ω)
j↑Y
(α)

µ
(2ω)
j↑Z
(α)

ª®®®®¬
(18)

µ
(2ω)
j↑X

and µ(2ω)
j↑Y

are the X and Y components of SH induced dipole and j denotes the arms j (j =
1, 2, 3).

Appendix D: SHG signal on the detector

In the experiment, we use two photomultipliers to record the second harmonic signal emitted by
the nanostar. One detector is used to collect the signal in the X polarization direction while the
other collects the Y polarization.

The expression of second harmonic field emitted by one of the dipoles is (hereafter, p = X or
Y ):

E (2ω)jp (r, α) = K
ω2

ε2
0 c2

A0(r) µ
(2ω)
j↑p
(α) (19)

The total signal recorded by the detectors is the integral of the intensity of the imaged field taken
over their surface Sdect :

sp =
∬
Sdect

Ip ds =
∬
Sdect

|
∑
j

E (2ω)jp (r, α)|
2ds (20)

Hereafter, we consider that the surface of the detector is large enough to collect all the light
focused in the image plane by the focal system.
Signal from one dipole
First, we consider the case with only one dipole located in the focal plane. We introduce a new
function g1(r) that satisfies the following conditions:

I1p(r) = g2
1p(r) s1p and

∬
g2

1p(r) ds = 1 (21)
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The function g1(r) expresses the relation between the second harmonic field and the second
harmonic signal. The intensity of one dipole is:

I1p(r) = (E
(2ω)
1p (r, α))

2 = K2 ω4

ε4
0 c4

A2
0(r)

(
µ
(2ω)
1↑p (α)

)2
(22)

and the integrated signal s1p for one dipole is:

s1p =

∬
Sdect

I1p(r) ds =
∬ (

E (2ω)1p (r, α)
)2

ds = K2 ω4

ε4
0 c4

(
µ
(2ω)
1↑p (α)

)2 ∬
A2

0(r) ds (23)

Inserting Eqs. (22) and (23) into Eq. (21), we get:

g1p(r) =
A0(r)√∬
A2

0(r) ds
=⇒ g1p(r) =

A0(r) µ
(2ω)
1p (α)

√s1p
and g1p(r) =

E (2ω)1p
√s1p

(24)

Signal from two dipoles
Next, we consider the case of two dipoles with a known interdistance between them. For a system
consisting of more than 2 dipoles, the electric field overlaps can be deduced from each pair of
two dipoles and thus reduces to this case. Inserting Eq. (19) into Eq. (20), one obtains the SHG
signal coming from two dipoles as:

sp = K2 ω4

ε4
0 c4

∬ (
µ
(2ω)
1↑p (α) A01(r) + µ

(2ω)
2↑p (α) A02(r)

)2
ds (25)

Another form of Eq. (24) as A0j(r) =
√sjp gj↑p(r)

µ
(2ω)
j↑p
(α)

is inserted into Eq. (25), then we get:

sp =

∬
(s1p g

2
1p(r) + s2p g

2
2p(r) + 2√s1p

√
s2p g1p(r) g2p(r)) ds

= s1p + s2p + 2√s1p
√

s2p

∬
g1p(r) g2p(r) ds (26)

=

(
1 −

∬
g1p(r) g2p(r) ds

)
(s1p + s2p) +

(∬
g1p(r) g2p(r) ds

)
(
√

s1p +
√

s2p)
2

• When
∬

g1p(r) g2p(r) ds = 0, the total signal coming from two non-overlapping dipoles
given in Eq. (26) becomes the incoherent sum of their intensities sp = s1p + s2p

The signal characterizing this case is described in Fig. 8(a). The two PSF do not overlap
when the dipoles are far enough from each other. This distance will be calculated in detail
in the next subsection. The signals from each dipole add up in the definition of the total
signal in an "incoherent" fashion. In the following, we name this signal as snov (no overlap
signal).

• When
∬

g1p(r) g2p(r) ds = 1, the total signal coming from two dipoles given in Eq. (26)
becomes sp = (

√s1p +
√s2p)

2.
Figure 8(c) shows the overlapping property of the two signals. When the dipoles are on
top of each other, this signal is given by squaring the sum of electric response and is the
fully overlapping signal sfov (full overlap signal).
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Fig. 8. Schematic of the overlap of the point spread function (PSF) for two dipoles:
(a)

∬
g1(r) g2(r) ds = 0, two PSF do not overlap. This case occurs when the distance

between two dipoles is large. (b)
∬

g1(r) g2(r) ds = 0.5, two PSF overlap partially and (c)∬
g1(r) g2(r) ds = 1, two PSF overlap fully. Case (c) occurs when two dipoles are located

at the same position.

• 0 <
∬

gip(r) gj↑p(r) ds < 1
Figure 8(b) illustrates the partial overlapping and the corresponding signal given by:

sp =
(
1 −

∬
g1p(r) g2p(r) ds

)
snov−p +

(∬
g1p(r) g2p(r) ds

)
s f ov−p (27)

The total signal is expressed as the sum of the fully overlapping and the non-overlapping signals.
We introduce the parameter c characterizing those contributions and defined by:

c =
∬

g1p(r) g2p(r) ds =

∬
A01(r) A02(r) ds√∬

A2
01(r) ds

∬
A2

02(r) ds
(28)

The Cauchy-Schwarz theorem gives the physically intuitive condition on c : 0 ≤ |c | ≤ 1.
Signal from three dipoles (or more): nanostar case
We now consider the case with three dipoles located in the focal plane of the objective lens. The
signal coming from three dipoles is

sp =
∬
(
∑
j

µ
(2ω)
j↑p
(α) A0j(r))2 ds =

∑
j

sjp + 2
∑
i, j

√
sip
√

sjp

∬
gip(r) gjp(r) ds (29)

Where i and j indicate the dipole number and i, j = 1, 2, 3.
In the ideal case, the three tips have the same size and we can assume that

∬
gi(r) gj(r) ds

does not depend on i, j> The total signal of three dipoles given in Eq. (29) becomes:

sp =
(
1 −

∬
gip(r) gj↑p(r) ds

) ∑
j

sjp +
(∬

gip(r) gjp ds
)
(
∑
j

√
sjp)2 (30)

As in the two dipoles case, we analyze various limits of
∬

gi(r) gj(r) ds :

• When
∬

gip(r) gjp(r) ds = 0, the total SHG signal is given as the sum of intensities. The
non-overlapping signal is: snov−p = s1p + s2p + s3p .

• When
∬

gip(r) gjp(r) ds = 1, the fully-overlapping signal is s f ov−p = (
√s1p +

√s2p +
√s3p)

2.
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In the general case, 0 ≤
∬

gip(r) gjp(r) ds ≤ 1, the total SHG signal given Eq. (30) in terms
of overlapping s f ov−p and non-overlapping snov−p contributions is:

sp =
(
1 −

∬
gip(r) gjp(r) ds

)
sin−p +

(∬
gip(r) gjp(r) ds

)
sco−p (31)

For the three dipoles case, the overlap parameter c is defined as:

ci j =
∬

gip(r) gjp(r) ds =

∬
A0i(r) A0j(r) ds√∬

A2
0i(r) ds

∬
A2

0j(r) ds
(32)

If we consider that star is perfectly symmetrical, the ci j does not depend on the indices i, j and
ci j = c.

• c = 0, the PSF of three dipoles do not overlap.

• c = 1, the PSF of three dipoles overlap completely.

• 0 < | c | < 1 gives an intermediate behavior between the two previous cases.

Appendix E: Calculation of the parameter c

In this section, we calculate the expression of the parameter c and analyze how it weighs the
contribution of the overlapping and non-overlapping signals.
As given in Eq. (32), the parameter c is defined as:

c =

∬
A0i(r) A0j(r) ds√∬

A2
0i(r) ds

∬
A2

0j(r) ds
=

∬ J1(a r)
r

J1(a(r − r0))

r − r0
ds∬

(
J1(a r)

r
)2 ds

(33)

Where, a =
k θm
M

and r0 is the distance between the centers the two PSF.
We switch from cylindrical to Cartesian coordinates:

c =

∬ J1 (a
√

x2 + y2)√
x2 + y2

J1 (a
√
(x − x0)2 + y2)√
(x − x0)2 + y2

ds

∬
(
J1 (a

√
x2 + y2)√

x2 + y2
)2 ds

(34)

The integrals

�����∬ ( J1 (a
√

x2 + y2)√
x2 + y2

)2 ds

����� and ∬ J1 (a
√

x2 + y2)√
x2 + y2

J1 (a
√
(x − x0)2 + y2)√
(x − x0)2 + y2

ds are

slowly converging due to their highly oscillatory variations and can be calculated in Fourier space

using the Parseval-Plancherel theorem. The Fourier transform of the function
J1(r)

r
is a constant

function over a circular area and can be used on the Airy function:

F

(
J1(a

√
x2 + y2)√

x2 + y2

)
=

2 π
a

circ
(
2 π
a

√
ξ2
x + ξ

2
y

)
(35)

In addition, the Fourier transform of F ( f (r − r0)) is e−2 i π µ r0 f̃ (µ). Combining with Eq. (35):

F

(
J1(a

√
(x − x0)2 + y2)√
(x − x0)2 + y2

)
= e−2 i π x0 ξx

2 π
a

circ
(
2 π
a

√
ξ2
x + ξ

2
y

)
(36)
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By denoting h(x0) the numerator of Eq. (34), we write the c parameter:

c =
h(x0)

h(0)
with h(x0) =

∬ J1 (a
√

x2 + y2)√
x2 + y2

J1 (a
√
(x − x0)2 + y2)√
(x − x0)2 + y2

dx dy (37)

By substituting Eqs. (35) and (36) into Eq. (37) and introducing u = 2 π
a ξx and v = 2 π

a ξy ,:

h(x0) =

∬
e−2 i π x0 ξx (

2 π
a
)2 circ2 (

2 π
a

√
ξ2
x + ξ

2
y ) dξx dξy =

∬
e−2 i π x0

a
2 π u circ2 (

√
u2 + v2) du dv

(38)
Based on properties of circ function, we get:

h(x0) =

∫ 1

−1

∫ 1

−1
e−i a x0 u circ

√
u2 + v2 du dv = 4

∫ 1

0

sin(a x0
√

1 − v2)

a x0
dv (39)

For h(0), we use limx→0
sin x

x
= 1, so h(0) = 4

∫ 1
0

√
1 − v2 dv = π. From Eqs. (39) and (37),

we obtain the final expression of parameter c as

c =
4
π

∫ 1

0

sin(a x0
√

1 − v2)

a x0
dv =

4
π

∫ 1

0

sin(a M d
√

1 − v2)

a M d
dv

If we substitute d =
√

3 h into Eq. (40), we obtain the dependence of c on the distance from
the position of the induce SHG dipole to the center of particle as

c =
4
π

∫ 1

0

sin(
√

3 M a h
√

1 − v2)
√

3 M a h
dv (40)

Its dependence on the translation length h is represented in Fig. 9.

1 2 3 4 5
kh

0.2

0.4

0.6

0.8

1.0

c

Fig. 9. Evolution of the overlap parameter c as a function of the distance h of translation of
the dipole from the center of the star. When h = 0, the 3 dipoles are on top of each other and
then interfere constructively. As h increases, the overlap decreases and the dipoles start to
interfere destructively.

Appendix F: Fitting parameters for the models 1 and 2

Table 3 gives all the fitting parameters for the two models discussed in the main text computed
on 4 typical nanoparticles, an almost perfect nanostars (star1), a slightly deformed one (star2)
and the same for two nanotriangles (triangle1 and triangle2).
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Table 3. This table summarizes the fitting parameters that have been calculated according to
the two models given in the main text. Moreover, the right panel provides multipolar weight
for each nanoparticles. These fits have been carried systematically for all nanoparticles
and we provide here four typical cases. Stars (triangles) 1 and 2 refer to a perfect and a
deformed nanostars (nanotriangles) respectively. For the model 2, the multipolar distribution
is dependent on the angle α of the incoming field polarization and we thus give the multipolar
weight for the stars for polarization that maximize the dipolar weight (noted dip) and the
quadrupolar one (noted quad). The multipolar distribution of the triangle is quite robust to
shape deformation and does not vary much with the polarization. For any case, β0 = 0 and
γ = 0.

Models kh ϕ β1 β2 β3 ν1 ν2 R2 Dip. Quad. Octup.

Star 1
M1 0.90 351 72.29 72.29 72.29 120 120 0.92 0.76 0.22 0.02

M2 dip 0.90 351 80.76 80.99 79.98 145 92 0.96 0.82 0.17 0.01

M2 quad " " " " " " " " 0.38 0.60 0.02

Star 2
M1 1.88 130 39.05 39.05 39.05 120 120 0.92 0.31 0.49 0.18

M2 dip 0.01 122 758.4 47.60 762.7 93 85 0.98 1.00 0. 0.

M2 quad " " " " " " " " 0.72 0.28 0.

Tri. 1
M1 1.40 9 30.29 30.29 30.29 120 120 0.94 0.52 0.40 0.08

M2 1.63 14 25.96 33.89 28.67 117 117 0.98 0.49 0.40 0.10

Tri. 2
M1 1.49 311 41.72 41.72 41.72 120 120 0.85 0.48 0.43 0.10

M2 1.22 306 50.20 46.59 18.72 132 288 0.98 0.69 0.29 0.02

Model 1 refers to the "perfect threefold symmetry" case - three dipoles of equal strength
oriented 2π/3 from each other - while model 2 refers to the imperfect case involving dipoles
of unequal weight and orientations. On the right side of the table, the norms of multipolar
coefficients of the reconstructed emitted field from the fits are given for each nanoparticles and
model. These norms are calculated using definitions given by expressions (5) and (6) in the main
text.
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