
HAL Id: hal-02311165
https://utt.hal.science/hal-02311165

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Flowshop scheduling problem with parallel semi-lines
and final synchronization operation

Irce F.G. Guimarães, Yassine Ouazene, Mauricio C de Souza, Farouk Yalaoui

To cite this version:
Irce F.G. Guimarães, Yassine Ouazene, Mauricio C de Souza, Farouk Yalaoui. Flowshop scheduling
problem with parallel semi-lines and final synchronization operation. Computers and Operations
Research, 2019, 108, pp.121-133. �10.1016/j.cor.2019.04.011�. �hal-02311165�

https://utt.hal.science/hal-02311165
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Flowshop scheduling problem with parallel semi-lines
and final synchronization operation

Irce F.G. Guimarãesa, Yassine Ouazeneb,∗, Mauricio C. de Souzaa, Farouk
Yalaouib

aDEP, Federal University of Minas Gerais
Av. Antônio Carlos 6627, Belo Horizonte - MG

31270 - 901, Brazil
b Laboratoire d’Optimisation des Systèmes Industriels

Université de Technologie de Troyes, 12 rue Marie Curie
CS 42060, 10004 Troyes, France

Abstract

This paper deals with a particular variant of the flowshop scheduling problem

motivated by a real case configuration issued from an electro-electronic mate-

rial industry. The shop floor environment is composed of two parallel semi-lines

and a final synchronization operation. The jobs must follow the same tech-

nological order through the machines on each parallel semi-line. However, the

operations on each semi-line are independent. The final synchronization opera-

tion, operated by a dedicated machine, can only start when the job is finished

on both semi-lines. The objective is to determine a schedule that minimizes

the makespan for a given set of jobs. Since this problem class is NP-hard in

the strong sense, constructive heuristic procedures and metaheuristics methods

are introduced to achieve optimal or near-optimal solutions. The performances

of the proposed GRASP and the Simulated Annealing algorithms are evaluated

and compared with the adaptation of two well-known heuristics. Computational

experiments show that the proposed metaheuristics provide very good results

in low computational times.

Keywords: flowshop scheduling; synchronization operation; heuristic and

metaheuristic methods; GRASP algorithm; simulated annealing algorithm

∗Corresponding author
Email address: yassine.ouazene@utt.fr (Yassine Ouazene)

Preprint submitted to Journal of LATEX Templates February 22, 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0305054819300942
Manuscript_797379e27d39a6caf92a16f36538a908

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0305054819300942
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0305054819300942
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0305054819300942

2010 MSC: 00-01, 99-00

1. Introduction

In this paper, we consider a variant of the permutation flowshop scheduling

problem. The classical permutation flowshop consists of n jobs to be processed

among a set of m machines arranged in series. The jobs must follow the same

technological order through the machines, and each job has a specific process-5

ing time in each machine. The goal is to determine, among all the possible

n! sequences, one that optimizes a certain performance measure. The most

commonly used is the minimization of the total completion time (makespan).

We analyze a variant of the permutation flowshop problem motivated by a

practical application found in the welding sector of an electro-electronics indus-10

try. The shop floor environment is composed of two parallel semi-lines and a

final synchronization operation. Each semi-line produces one of the halves of

a job. These halves are assembled in the final synchronization operation. The

halves of the respective jobs must be processed in the same order in each semi-

line, which must be followed in the synchronization operation as well. Figure 115

shows a scheme of the studied environment. In this figure, the semi-lines process

first the halves of job 2, then those of job 1, and finally those of job 3. This same

order is followed in the synchronization operation. An operation in a machine

of a semi-line does not need to start at the same time as an operation in the

machine of the other semi-line. However, the final synchronization operation20

of a job can only start when its halves are completed in both semi-lines. The

objective is to minimize the makespan.

We consider the cases where the semi-lines have (i) the same number and

(ii) different number of machines. A practical example of a process with differ-

ent number of machines in each semi-line is found in the production of circuit25

breakers, where one semi-line with two machines processes the contact blade,

and the other semi-line with three machines processes the bimetal. When these

two semi-products are completed, they are assembled in the synchronization

2

Synchronizing

Operation

 SEMI-

LINE1

SEMI-

LINE 2 3 1 2

3 1 2

3 1 2

Figure 1: System under study.

operation.

1.1. Illustrative examples30

Figure 2 shows the Gantt chart of an optimal sequence for a small illustrative

example with 2 jobs, yellow and green, 2 machines in each semi-line l, l = 1, 2,

and the synchronization operation. We denote by ilk, the machine k = 1, 2 of

semi-line l, and by is the synchronization operation. Observe that a half of a

job can start in a machine i1k independently of when the other half starts in a35

machine i2k. However, even when a half of a job is completed at semi-line l = 1

it must wait for the other half to be completed at semi-line l = 2 before the

synchronization operation can start.

Let C∗ be the optimum makespan of a given instance of the variant of the

permutation flowshop under study, and let Cl be the optimum makespan of40

an instance of the classical permutation flowshop considering the machines of

semi-line l along with the synchronization operation. In general we have that

C∗ > Cl, l = 1, 2. Let us consider a small example with 3 jobs where each semi-

3

0 21 3 4 5 6 7 8 9 10 11

i

i

i

i

i

1

1

1

2

2

2

2

1

s

Figure 2: Gantt chart of a small example.

line l has 2 machines, plus the synchronization operation. Table 1 shows the

processing times of each job in each machine ilk, k = 1, 2, and in the synchroniza-45

tion machine is. The optimal makespan of the permutation flowshop instance

i11, i
1
2, is is 94, which can be obtained with the sequence j1, j3, j2. The makespan

of this sequence in the problem with two semi-lines and the synchronization

operation is 96. Alternatively, the optimal makespan of the permutation flow-

shop instance i21, i
2
2, is is 93, with the sequence j2, j1, j3, and the makespan in50

the problem with two semi-lines and the synchronization operation is 109. But

the optimal makespan of the permutation flowshop with the two semi-lines and

the synchronization operation is 95, which can be obtained with the sequence

j3, j2, j1 (not optimal for any of the two instances given by the semi-lines con-

sidered independently).55

This is also observed when the semi-lines have different number of machines.

Indeed, let us just consider the instance obtained by removing the first machine

i11 from semi-line l = 1 in Table 1, i.e., an instance with 1 machine in semi-line

4

semi-line l = 1 semi-line l = 2

i11 i12 i21 i22 is

j1 10 18 14 16 22

j2 6 37 18 9 25

j3 5 4 21 8 19

Table 1: An example with the same number of machines in each semi-line.

l = 1 and 2 machines in semi-line l = 2, plus the synchronization operation.

The optimal makespan is still 95, which can be obtained with the same sequence60

j3, j2, j1.

1.2. Related literature

Many approaches have been proposed for the flowshop problem since John-

son [1] presented the resolution for the flowshop considering two machines.

Gupta and Stafford [2] provide a historical perspective of the research in the65

flowshop problem and its variants. The well-known algorithm of Johnson [1]

finds in polynomial time an optimal sequence for a set of n jobs to be processed

in m = 2 machines. A major difficulty is to find an optimal solution when the

number of machines is greater than two, since this problem is known be strongly

NP-Hard (Garey et al. [3]). Thus, studies have been developed in the literature70

of flowshop scheduling considering exact and heuristic techniques as well.

1.2.1. Permutation flowshop

Tseng et al. [4] report a thorough empirical analysis to assess the effectiveness

of mixed-integer linear programming (MIP) formulations for the permutation

flowshop. We briefly give some more recent examples of the use of MIP models to75

address flowshop problems in the literature. Frach et al. [5] also present a MIP to

solve flowshop problems with a limited number of intermediate buffers. Naderi

et al. [6] propose a MIP to minimize the makespan, and the total tardiness in

a flowshop environment. Ronconi and Bergin [7] address by MIP the problem

5

of minimizing the total earliness and tardiness of jobs for the flowshop problem80

with unlimited and also with zero buffer. Hnaien et al. [8] propose two MIP

models for the two-machine flowshop scheduling problem with unavailability

constraint in the first machine in order to minimize the makespan. The authors

propose a branch and bound algorithm based on new lower bounds and heuristics

that performs better than the two MIP models.85

Heuristics have been proposed in the literature to obtain good solutions in

a short computational time, see, for instance, Mainieri and Ronconi [9], Nawaz

et al. [10], Rad et al. [11], and Widmer and Hertz [12]. Johnson’s algorithm was

adapted by Allahverdi et al. [13] to minimize the total completion time in two-

machines flowshop with limited and random processing times. Pan et al. [14]90

tackle the flowshop problem with zero buffer. In that study, the heuristic of

Nawaz et al. [10] exploit specific characteristics of the problem to find good so-

lutions with little computational effort. Allaoui and Artiba [15] aim to minimize

the makespan in a two stage hybrid flowshop with a single machine in the first

stage and m machines in the second stage. Fernandez-Viagas and Framinan [16]95

propose efficient tie-breaking mechanisms to be used in the heuristic of Nawaz

et al. [10] when dealing with total tardiness.

Metaheuristic approaches have also been proposed in the literature to solve

large instances in reasonable computational time. Simulated annealing has been

applied by Low et al. [17] and by Nearchou [18] to minimize the makespan in100

the flowshop problem, and by Mirsanei et al. [19] and by Santosa and Rofiq [20]

to the hybrid flowshop problem with m-machines in each stage. GRASP has

been applied by Prabhaharan et al. [21]. Shahul Hamid Khan et al. [22] ad-

dress with GRASP a bicriteria flowshop where the objective is to minimize the

weighted sum of makespan and maximum tardiness. Their algorithm was able105

to outperform a simulated annealing previously proposed by Chakravarthy and

Rajendran [23] for the same problem. On the other hand, in the computa-

tional experiments conducted by Sivasankaran et al. [24] simulated annealing

outperformed GRASP for a single-stage scheduling problem.

6

1.2.2. Distributed permutation flowshop110

In 2010, Naderi and Ruiz [25] introduced a new generalization of the regular

permutation flowshop scheduling problem referred to as the distributed per-

mutation flowshop scheduling problem or (DPFSP). This new version assumes

that there are a total of F identical factories or shops, each one composed

of m machines disposed in series. The available jobs have to be distributed115

among the different factories or shops and then a processing sequence has to

be derived for the jobs assigned to each factory. The author characterized the

DPFSP and proposed different mixed integer linear programming models to

solve the problem. They also discussed several heuristics based on dispatch-

ing rules, effective constructive heuristics and variable neighborhood descent120

methods. This problem has attracted considerable interest over the last few

years. Many authors have presented new optimization methods to solve this

problem. For example, Bargaoui et al. [26] used an artificial chemical reaction

metaheuristic which objective is to minimize the maximum completion time to

solve the distributed permutation flowshop scheduling problem with makespan125

criterion. In the proposed metaheuristic, the NEH heuristic was adapted to gen-

erate the initial population of molecules. Furthermore, a One-Point crossover

and a greedy strategy were embedded in the algorithm in order to ameliorate

the solution quality. Ruiz et al. [27] proposed Iterated Greedy algorithms based

on improved initialization, construction and destruction procedures, along with130

a local search procedure.

Hatemi et al. [28] presented for the first time a combination of DPFSP and

the Assembly Flow Shop Scheduling Problem referred to distributed assembly

permutation flowshop scheduling problem (DAPFSP). DAPFSP contains two

phase, production and assembly. At the first phase, it is to produce manufacture135

parts, just like in the regular DPFSP. The second phase is to assemble parts to

make products in one assembly factory with only an assembly machine. The

authors proposed two simple constructive algorithms to solve the problem. They

also provided two sets of instances to test the model and algorithms.

7

The literature about the distributed permutation flowshop Problem is rel-140

atively small. Li et al. [29] addressed the same problem. They proposed four

versions of genetic algorithm by combining the classical genetic algorithm with

enhanced crossover and several local searches to solve the problem. Recently,

Hatemi et al. [30] addressed the same problem with the additional consid-

eration of sequence dependent setup times at both production and assembly145

stages. They proposed two simple heuristics and two metaheuristics to solve it.

The performance of their proposed methods was compared through extensive

computational and statistical experiments study. A hybrid biogeography-based

optimization algorithm that integrates several novel heuristics is proposed by

Lin and Zhang[31] to solve the DAPFSP with the objective of minimizing the150

makespan. The performance of their approach was evaluated based on two

sets of benchmark instances issued from the literature. Compared to the best-

known results, new best solutions for 71 small-sized instances and 91 large-sized

instances were found.

To the best of our knowledge, Sang et al. [32] addressed in 2019 the first pa-155

per attempt to minimize total flowtime for the distributed assembly permutation

flowshop scheduling problem. They proposed three variants of the discrete in-

vasive weed optimization approach to solve the problem. To test the proposed

algorithms, they carried out a comprehensive experiment based on 810 instances

issued from literature. Numerical results and statistical analysis show that the160

presented algorithms perform substantially better than the other algorithms in

for solving the DAPFSP with the total flowtime criterion.

For a complete review of the literature of the different variants of deter-

ministic assembly scheduling problems, reader can refer the excellent work of

Framinan et al. [33]. The authors reviewed a large number of papers in order165

to provide a comprehensive overview on scheduling with assembly operations.

They proposed a unified notation for assembly scheduling models that encom-

pass all concurrent-type scheduling problems. Using this notation, the existing

contributions are reviewed and classified into a single framework, so a compre-

hensive, unified picture of the field is addressed.170

8

1.3. Structure of the paper

Based on the studies aforementioned, we propose, for the variant of the flow-

shop analyzed in this paper: a MIP model; heuristics based on the algorithms

proposed by Johnson [1] and by Nawaz et al. [10]; and GRASP and simulated

annealing metaheuristics. We report computational experiments on random175

instances generated according to procedures used to generate benchmark in-

stances found in the literature for the permutation flowshop. This work is an

extension of the preliminary results in [34]. The paper is organized as follows.

In Section 2 the mathematical model is presented. The proposed heuristics and

metaheuristics are presented in Section 3 and Section 4, respectively. Compu-180

tational experiments are reported in Section 5, and concluding remarks drawn

in Section 6.

2. Mathematical formulation

We propose a MIP formulation based on the previous works developed by

Wagner [35] and by Stafford [36]. According to the study conducted by Tseng185

et al. [4], such kind of formulation is the best for permutation flowshop. Let n

be he number of jobs, and ml be the number of machines in semi-line l = 1, 2

(before the synchronizing operation). In our model, a unique permutation has

to be chosen for two flowshop problems with ml+1 machines each subject to the

additional constraint that the completion times of each job on machines m1 + 1190

and m2 + 1 are the same. Let plki be the processing time of job i on machine

k of the problem l (p(m1+1)i = p(m2+1)i). The model can be generalized for an

arbitrary number L of semi-lines. Thus, assuming, without loss of generality,

l = 1, 2 flowshop problems with ml + 1 machines each, the variables are defined

as follows:195

9

zij binary variable specifies if job i is assigned to the jth position of the

permutation (common two both l = 1, 2 flowshop problems);

xljk idle time on machine k of the problem l before the job starts in the

jth position of the permutation;

yljk idle time of job in the jth position of the permutation after finish-

ing the processing on machine k of problem l, while waiting for the

machine k + 1 of problem l to become available;

Cl
j completion time in problem l of the job in the jth position of the

permutation.

The makespan is given by the completion time of the job in the last position

of the permutation. The model is written as follows:

min C1
n (1)

n∑
j=1

zij = 1; i = 1, . . . , n (2)

n∑
i=1

zij = 1; j = 1, . . . , n (3)

n∑
i=1

plrizij+1+ylj+1r+xlj+1r = yljr+

n∑
i=1

plr+1izij+x
l
j+1r+1; l = 1, 2, j = 1, . . . , n−1; r = 1, . . . ,ml

(4)

k−1∑
r=1

n∑
i=1

plrizi1 = xl1k; l = 1, 2, k = 2, . . . ,ml (5)

mv∑
r=1

n∑
i=1

pvrizi1 ≤ xl1ml+1; l, v = 1, 2 (6)

yl1k = 0; l = 1, 2, k = 1, . . . ,ml − 1 (7)

xl1ml+1 −

(
xl1ml

+

n∑
i=1

pmlizi1

)
= yl1ml

; l = 1, 2 (8)

10

j∑
u=1

n∑
i=1

plml+1iziu +

j∑
u=1

xluml+1 = Cl
j ; l = 1, 2, j = 1, . . . , n (9)

C1
j = C2

j ; j = 1, . . . , n (10)

zij ∈ {0, 1}; j = 1, . . . , n, i = 1, . . . , n (11)

yljk, x
l
jk ≥ 0; l = 1, 2, j = 1, . . . , n; k = 1, . . . ,ml + 1 (12)

The objective function (1) minimizes the makespan. Constraints (2) and200

(3) assign one job to exactly one position in the permutation. Constraint (4)

is the so called job-adjacency, machine linkage constraint [37]. Constraint (4)

ensures equal time-slices on adjacent machines for each pair of consecutive jobs

in the sequence. A time-slice between the completion of job in position j on

machine r and the start of job in position j + 1 on machine r + 1 is analysed.205

On the left side is computed the idle time on machine r before starting job in

position j + 1, its processing time, and the idle time of the job in case machine

r + 1 is not free. On the right side is computed the idle time of job in position

j before starting in machine r + 1, its processing time, and the idle time on

machine r + 1 while waiting for job in position j + 1 to finish in machine r.210

The computations on each side must occur in the same time-slice. Constraint

(5) computes, from the second machine on, the idle time in each machine of

each semi-line while waiting for the first job. Constraint (6) ensures that the

idle time on the synchronization machine waiting for the first job is equal to

the larger total processing time on each semi-line. Constraint (7) ensures that215

there is no idle time for the job assigned to the first position in each machine of

each semi-line, but the first job may wait to be processed on the synchronization

machine, which is ensured by constraint (8). Constraints (9) and (10) ensure

the synchronization. Constraints (11) and (12) impose the variation domain of

the variables.220

11

The differences that have to be introduced in the model with respect to the

classical permutation flowshop are due to the fact that we have synchronize

each problem l at machines ml+1 (the synchronization operation duplicated to

be the last machine in each problem l). To do this we have to compute in (9)

the completion time Cl
j for each job j in each flowshop problem l, instead of225

just the makespan, and impose them to be equal in (10).

This implies (i) that the ml+1 machine in problem l may have to wait for

the first job in the sequence more than the sum of the processing times of such

job on the previous machines (which is assumed to be equal in modeling the

classical permutation flowshop). Thus, in (6) the waiting time on the ml+1230

machine for the first job in each problem l must be greater or equal than the

processing times in the previous machines of all problems, i.e., the two halves

of a job must be completed before start the synchronization operation. And (ii)

that the first job of the sequence may have to wait in problem l before starts its

operation at the ml+1 machine (which is assumed to not occur in modeling the235

classical permutation flowshop). Indeed, we compute in (8) the waiting time

of the fist job after being completed in the ml machine in problem l because

machine ml+1 has to be synchronized.

Let us illustrate with the example in Figure 2. The synchronization operation

is the third machine in each problem l. We have x1
1,3 = 4, which is greater than240

the time spent by job yellow to be processed in the first two machines of problem

l = 1, since the third machine of problem l = 1 has to wait job yellow to be

processed in the first two machines of problem l = 2. We also have y1
1,2 = 1,

which is the time job yellow has to wait before start processing at the third

machine due to synchronization.245

3. Heuristics

In this section, we propose adaptations of the NEH heuristic by Nawaz et

al. [10] and also adaptations of the algorithm of Johnson [1] to obtain feasible

solutions for the flowshop scheduling problem with parallel semi-lines and the

12

synchronization operation.250

3.1. Adaptations of the NEH heuristic

The NEH heuristic for the classical permutation flowshop starts by sorting

the n jobs in decreasing order of the sums of processing times on all the m

machines. Then, a partial scheduling consists of the first two jobs of this order

in a sequence that minimizes the makespan. The other jobs, from the third, are255

inserted (one at a time) in the position of the partial scheduling leading to the

smallest makespan. The relative positions between jobs already inserted in the

partial scheduling do not change. We develop three adaptations of the NEH

algorithm : NEHav - the average of the processing times p1
ki and p2

ki for each

k = 1, . . .ml and for each job i, NEHhi - the highest processing time between260

p1
ki and p2

ki for each k = 1, . . .ml and for each job i, and NEHsep - where each

semi-line is considered separately including the synchronization operation.

The NEHav and the NEHhi heuristics require the same number of machines

in each semi-line, i.e, m = m1 = m2. Let f designate the final synchronization

machine. The general principle is to reduce the two semi-lines to a single line265

and apply the NEH heuristic. We do this by replacing at each stage the cor-

responding machines in each semi-line for a a single machine, as illustrated in

Figure 3.

In the NEHav heuristic, for each job j = 1, . . . , n, we compute p̄kj = (p1
kj +

p2
kj)/2, where k = 1, . . . ,m is the kth-machine in each semi-line. At this point270

we have an instance of the classical permutation flowshop with m+ 1 machines

where, for each job j, p̄kj is the processing time on machine k = 1, . . . ,m and

pfj is the processing time on the last machine, and apply the NEH heuristic

to obtain a sequence seqav. Finally, we compute the makespan incurred by the

sequence seqav in the whole system with the actual processing times plkj for each275

semi-line l = 1, 2.

The NEHhi heuristic works in a similar manner. For each job j = 1, . . . , n,

we compute p̄kj = max{p1
kj , p

2
kj}, where k = 1, . . . ,m is the kth-machine in each

semi-line. Analogously to NEHav, we obtain by the NEH heuristic a sequence

13

Figure 3: Reducing the semi-lines to a single line, m = 3.

seqhi for an instance of the classical permutation flowshop with m+ 1 machines280

where, for each job j, p̄kj is the processing time on machine k = 1, . . . ,m and

pfj is the processing time on the last machine. We then compute the makespan

incurred by the sequence seqhi in the whole system with the actual processing

times plkj for each semi-line l = 1, 2.

In the NEHsep heuristic we generate two instances of the classical permuta-285

tion flowshop. NEHsep does not require the same number of machines in each

semi-line. Each instance is composed of the machines of one of the semi-lines

along with the synchronization operation, as illustrated in Figure 4. We apply,

to obtain a sequence seql
sep, the NEH heuristic to each instance l = 1, 2 with

ml + 1 machines where, for each job j, plkj is the processing time on machine290

k = 1, . . . ,ml and pfj is the processing time on the last machine. We adopt the

sequence seql
sep, l = 1, 2, leading to the smallest makespan in the whole system

with the two semi-lines and the synchronization operation.

14

instance 1

instance 2

Figure 4: Generating two instances of the classical permutation flowshop.

3.2. Adaptations of Johnson’s algorithm

Johnson’s algorithm obtains a sequence that minimizes the makespan for295

the flowshop problem with two machines. The optimal sequence begins with

the jobs having the processing time on the first machine smaller than the pro-

cessing time on the second machine sorted in increasing order of processing times

on the first machine, and ends with the remaining jobs in decreasing order of

processing times on the second machine. We develop two adaptations of the300

Johnson’s algorithm. The general principle is to consider the studied system as

a flowshop with two machines by setting the synchronization operation as the

second machine.

In the adaptation denoted by Johav, for each job j = 1, . . . , n, the aver-

age processing time
∑m1

k=1 p1
kj+

∑m2
k=1 p2

kj

m1+m2
in the machines of the two semi-lines is305

used as the processing time on the first machine. The processing time of the

synchronization operation is the processing time on the second machine. We

then apply Johnson’s algorithm, and compute, for the sequence obtained, the

makespan in the whole system with the actual processing times plkj for each

semi-line l = 1, 2. The adaptation denoted by Johhi works in a similar manner,310

15

but the largest processing time maxl=1,2,k=1,...,ml
{plkj} among the machines of

the semi-lines is used as the processing time of job j on the first machine.

4. Metaheuristics

We propose to use the previously described heuristics in the construction

phase of a GRASP algorithm. GRASP was successfully applied to the permu-315

tation flowshop by Prabhaharan et al. [21], and to a multi-objective variant by

Arroyo and de Souza Pereira [38]. Alternatively, we propose a simulated anneal-

ing algorithm, which was also successfully applied to the permutation flowshop

by Hurka la and Hurka la [39], and to a multi-objective variant by Jaros law et

al. [40].320

4.1. GRASP

GRASP is a multistart metaheuristic, see, for instance, Resende and Ribeiro [41].

A GRASP iteration consists basically of two phases: a construction phase that

builds a feasible solution using a randomized greedy heuristic, followed by a

local search phase. We propose two versions of GRASP to try to find optimal325

or near-optimal solutions for the flowshop problem with parallel semi-lines and

the synchronization operation. These variants differ in the heuristic employed

in the construction phase. One version uses NEHsep and the other uses Johav,

since these were the procedures to obtain the best results in our computational

experiments, c.f., Section 5.330

Figure 5 presents the pseudo-code of the construction phase of GRASP NEHsep.

The procedure is written for a number L of semi-lines. The main loop in lines

1 to 10 treats, as NEHsep, each semi-line l along with the synchronization oper-

ation as an independent instance of the classical permutation flowshop. In line

2, for each job j, pj is the sum of processing times on all the ml + 1 machines.335

The inner loop in lines 3 to 8 applies a randomized version of NEHsep. Instead

of taking each time a job in decreasing order of pj , a job q is randomly chosen

from the Restricted Candidate List RCLl. Given a percentage α of the total

16

number n of jobs, at each time, RCLl contains the αn jobs with the largest

pj not yet added to the sequence (if it remains lesser jobs than αn, then all340

remaining jobs are inserted at RCLl). The insertion of job q randomly selected

from RCLl in the sequence under construction is done according to the NEH

heuristic. In line 9, the makespan mkl incurred by seql in the whole system

with the two semi-lines and the synchronization operation is computed. At

each GRASP iteration the construction phase returns, in line 11, the sequence345

seql , l = 1, . . . , L, leading to the smallest makespan.

Procedure Construction Phase GRASP NEHsep

1 For l = 1 to L do

2 Let J be the set of n jobs, and compute pj =
∑ml

k=1 p
l
kj + pfj for each job j ∈ J .

3 For t = 1 to n do

4 Let RCLl ⊆ J be the set of the min{αn, n− t+ 1} jobs with the largest pj .

5 Take at random a job q ∈ RCLl.

6 Insert q in the best of the t possible positions in the partial sequence seql

7 Let J = J − {q}

8 End-For

9 Compute be the makespan mkl incurred by seql in the whole system.

10 End-For

11 Return the sequence seql, l = 1, . . . , L, leading to the smallest mkl.

End-Procedure

Figure 5: Pseudo-code of the construction phase of GRASP NEHsep.

Figure 6 presents the pseudo-code of the construction phase of GRASP Johav.

The procedure uses two Restricted Candidate Lists: RCLu for the upward part,

and RCLd for the downward part of the sequence seqJav. In line 1, for each

job j, pj is the average processing time on all the machines of the L semi-lines350

(the processing time of job j reducing the semi-lines to the first machine, the

synchronization operation being the second machine). As in Johnson’s algo-

rithm, in line 2 the jobs are partitioned in two subsets Ju and Jd by comparing

pj to pfj . Note that nu and nd are set in line 3, and do not change along the

procedure. The first loop in lines 4 to 9 builds with a randomized version of355

17

Johnson’s algorithm the upward part of seqJav. Instead of taking each time a

job in increasing order of pj , a job q is randomly chosen from RCLu. Given a

percentage α of nu, at each time, RCLu contains the αnu jobs with the smallest

pj not yet added to the sequence (if it remains lesser jobs than αnu, then all

remaining jobs in Ju are inserted at RCLu). As in Johnson’s algorithm, job q is360

inserted in the last position of seqJav. The second loop in lines 10 to 14 builds

in an analogous manner the downward part of seqJav, as each time a job q is

randomly chosen from RCLd which contains the αnd jobs with the largest pj

not yet added to the sequence. The makespan incurred by seqJav in the whole

system with the two semi-lines and the synchronization operation is computed365

in line 16, and seqJav is returned by the construction phase at each GRASP

iteration in line 17.

Procedure Construction Phase GRASP Johav

1 Let J be the set of n jobs, and compute pj =

∑L
l=1

∑ml
k=1

plkj∑L
l=1

ml
for each job j ∈ J .

2 Let Ju ⊆ J (resp. Jd ⊆ J) be the set of jobs such that pj ≤ pfj (resp. pj > pfj).

3 Set nu = |Ju| and nd = |Jd|.

4 For t = 1 to nu do

5 Let RCLu ⊆ Ju be the set of the min{αnu, nu − t+ 1} jobs with the smallest pj .

6 Take at random a job q ∈ RCLu.

7 Insert q in the t-th position in the partial sequence seqJav

8 Let Ju = Ju − {q}

9 End-For

10 For t = 1 to nd do

11 Let RCLd ⊆ Jd be the set of the min{αnd, nd − t+ 1} jobs with the largest pj .

12 Take at random a job q ∈ RCLd.

13 Insert q in the (nu + t)-th position in the partial sequence seqJav

14 Let Jd = Jd − {q}

15 End-For

16 Compute be the makespan incurred by seqJav in the whole system.

17 Return the sequence seqJav.

End-Procedure

Figure 6: Pseudo-code of the construction phase of GRASP Johav.

18

The local search for both versions of GRASP is based on swap moves. Let

π be a permutation of the n jobs. The local search procedure evaluates all the

possible O(n2) moves swapping pairs of jobs at two different positions in π.370

Initially, π is set as the permutation returned by the construction phase. The

local search uses the strategy of best improvement move. Let π′ be the solution

with lowest cost in the neighborhood of π. If the cost of π′ is lower than the cost

of π, then π is updated to π′ and the search resumes. Otherwise π is returned

as the local optimum.375

4.2. Simulated annealing

We also use NEHsep and Johav as initial solutions to a Simulated Annealing

(SA) algorithm. Given a current solution s, SA proceeds generating at each

iteration a neighbor solution s′ with a swap move at random. If s′ improves the

makespan of s, then the current solution is updated. To prevent getting stuck380

in a local optima, the algorithm allows some worsening solutions. This is done

by respecting a probability of allowance in relation to a temperature T . Let ∆

be the difference in the makespan between s′ and s. The worsening solution

is accepted if a randomly chosen value between 0 and 1 is lower than e−∆/T .

The algorithm stopping criterion is determined by the slow cooling of the initial385

temperature. After a number of iterations with the same temperature without

improvement, the temperature is updated to αT , α ∈ (0, 1). Note that GRASP

and SA exploit the same neighborhood. At the end of SA, as an intensification

strategy, we apply the local search based on swap moves to the solution returned

by SA.390

5. Computational experiments

The computational experiments were structured into three comparative set-

tings: comparison of the heuristics proposed in Section 3 in terms of solution

quality, tuning parameters of the metaheuristics proposed in Section 4, and eval-

uation of the effectiveness of the best metaheuristic configurations with respect395

to optimal or lower bounds obtained with the MIP model proposed in Section 2.

19

For such purpose, we generated two set of instances according to the guide-

lines introduced by Taillard [42]. In the first set of instances the semi-lines have

the same number of machines each, while in the second set they have different

number of machines. A total of 230 instances were generated with 10, 20, and400

50 jobs, and 3, 5, 7, and 11 machines, including the final synchronization ma-

chine. For example, an instance with 3 machines belonging to the first set has 2

machines in each semi-line, and the final synchronization machine, whereas an

instance with 3 and 5 machines belonging to second the set has 2 machines in

one semi-line, 4 machines in the other semi-line, and the final synchronization405

machine. The set with the same number of machines contains 120 instances: 10

instances for each combination number of jobs - number of machines. The set

with different number of machines contains 110 instances: 50 instances with 10

jobs, 50 instances with 20 jobs, and 10 instances with 50 jobs.

The computational experiments were run on a Intel Core i3, 3.1GHz with410

4GB of RAM. The results of the MIP model were obtained with CPLEX 12.6.1,

and the proposed algorithms were implemented in C++. We were able to obtain

optimal solutions for 186 instances.

In the first two comparative settings, i.e., comparisons of the heuristics pro-

posed in Section 3 and tuning parameters of the metaheuristics proposed in415

Section 4, the quality of the solution obtained by the proposed algorithms is

measured by the percentage gap = ub−opt
opt ∗ 100, where ub is the solution ob-

tained by the proposed algorithm and opt is the optimal or the best solution

obtained in these settings (in the case of the remaining open instances).

Figure 7 shows, for each heuristic proposed in Section 3, the average per-420

centage gap, the range interval of the average gaps, and the fit to a normal

distribution. Figure 7a shows results for the instances with the same number

number of machines in each semi-line, and Figure 7b results for the instances

with different number of machines.

Considering the results shown in Figure 7a, we can see that the idea of425

reducing the problem to a classical permutation flowshop is not effective, since

NEHav and NEHhi present the higher gaps. The performance of the adaptations

20

(a) Same number of machines.

(b) Different number of machines.

Figure 7: Comparison of the proposed heuristics.

21

of Johnson’s algorithm vary considerably, since Johav and Johhi present the

higher standard deviations. The heuristic NEHsep obtained the best average

results on the both set of instances. We remark that for the instances for430

which the optimal solution were obtained, the optimal values are higher that

the optimal values considering each semi-line along with the synchronization

machine as a classical permutation flowshop, i.e., there is not a semi-line that

dominates the other one. The average gaps observed for NEHsep, Johav, and

Johhi are higher for the set with different number of machines. As NEHsep435

and Johav were the heuristics to present the best results, they were used in our

GRASP and SA algorithms, c.f., Section 4.

Figure 8 shows results for GRASP with different values of the parameter α

which controls the cardinality of the RCL. The number of GRASP iterations

without improvement, i.e., the stopping criteria, was set to 100. Increasing the440

value of α leads to a RCL with a larger cardinality. We consider for α the

values 20%, 30%, and 50%. We were able to drastically reduce solution costs

embedding NEHsep and Johav into GRASP. GRASP NEHsep with α = 50%

presents average gaps of less than 0.5% to the optimal or to the best solution

obtained in this setting.445

Figure 9 shows results for SA with different values of the parameter α, the

cooling factor, which controls the reduction of the temperature. The initial and

the final temperatures were set to 6000 and 10−4, respectively. The number

of SA iterations with a constant temperature without improvement was set to

90. We consider for α the values 0.20, 0.50, and 0.95. Although important450

improvements can be observed, SA was not able to improve average gaps in the

same manner as GRASP. The best results with SA presents average gaps higher

than 2%.

We now report in a final comparative setting detailed results to assess the

effectiveness of GRASP. For such purpose we report optimality gaps computed455

with respect to optimal or best lower bounds obtained with the MIP model

proposed in Section 2. Since GRASP NEHsep with α = 50% obtained the best

results in the previous experiments, we investigate greater values of α = 75%,

22

(a) Same number of machines.

(b) Different number of machines.

Figure 8: GRASP performances regarding different values of the Restricted Candidate List

(RCL) parameter.

23

(a) Same number of machines.

(b) Different number of machines.

Figure 9: SA performances regarding different the values of the cooling factor parameter.

24

and α = 100%.1 It turns out that best results were obtained with α = 100%,

which corresponds to a random multistart algorithm, i.e., each iteration consists460

of generating a completely random permutation and applying the local search

procedure.

Tables 2 and 3 present average results for GRASP NEHsep with α = 50%,

α = 75%, and α = 100% on instances with the same and different number of

machines in each semi-line, respectively. Each line of the tables corresponds465

to average results for 10 instances of a given combination of number of jobs -

number of machines. The first column indicates the number of jobs and the

number of machines. For example, in Table 2, E10×03 indicates instances with

10 jobs, 2 machines in each semi-line, and the final synchronization machine,

whereas in Table 3, D10× 03× 05 indicates instances with 10 jobs, 2 machines470

in one semi-line, 4 machines in the other semi-line, and the final synchronization

machine. For the MIP model it is shown, in the second and third columns, the

number of instances for each combination solved to optimality and the average

computational time in seconds, respectively. Then, for each value of α, it is

shown the number of instances for each combination the optimal solution was475

found, the average optimality gap in percentage, the average computational

time in seconds, and the average total number of iterations.

Note that not only the number of jobs, but also the number of machines play

an important role in how difficult is to solve the problem to optimality with the

MIP model. For example, instances with 50 jobs and 3 machines in each semi-480

line were solved 10 times faster in average than instances with 20 jobs and 5

machines in each semi-line. Instances with a large number of jobs and machines

were out of reach for the MIP model. Results show that GRASP NEHsep is

an effective and robust algorithm to tackle the problem. The overall average

optimality gaps are smaller than 1% for all three values of α, and only for485

4 combinations with 11 machines out of 23 combinations of number of jobs

1We thank the anonymous reviewer for his/her suggestion to investigate greater values of

α.

25

- number of machines average optimality gaps are in the range between 1%

and 5%. In particular GRASP NEHsep with α = 100%, the random multistart

version, obtained the optimal solution for 186 out of 230 instances and for only

2 combinations the average optimality gap exceeded 1% (E50× 11 with 2.43%490

and D20×03×11 with 1.14%). Moreover, these results were obtained with low

computational times, even for instances out of reach for the MIP model.

Tables 4 to 9 present detailed results for the combinations which optimal

values were not obtained for most instances, namely: E20 × 07, E20 × 11,

E50 × 07, E50 × 11, D20 × 03 × 11, and D20 × 05 × 11, in this order. In495

these tables, the first column identifies the instance, and the second column

presents the best lower bound obtained when running the MIP model. Then,

for each value of α, it is shown for each instance the upper bound obtained,

the optimality gap in percentage, the computational time in seconds, and the

total number of iterations. The detailed results on the harder instances confirm500

that GRASP NEHsep is an effective and robust algorithm to tackle the problem,

specially GRASP NEHsep with α = 100% that obtained optimality gaps below

5% for all instances but E50× 11− 6.

6. Conclusion

This work focused on the development of optimization methods to solve a505

variant of the permutation flowshop scheduling problem with parallel semi-lines

and a final synchronization operation. This study emerged from a practical sit-

uation in a welding process of an industry that manufactures electro-electronic

system products, and may be a common problem in other industrial sectors as

well. Our purpose was to design efficient methods to solve the problem, which,510

to the best of our knowledge, has not yet been treated.

In a first approach, a mixed-integer linear programming model, inspired from

the classical permutation flowshop, was introduced. This model required adap-

tations regarding to the treatment of the semi-lines separately and a particular515

26

attention in the finalization of the semi-lines since this is the point of junction

of the two halves of the jobs that are produced in the two semi-lines. The

model was efficient for small instances, but for larger instances, it was not able

to find optimal solutions in moderate computational times. We also proposed

constructive heuristics and methaheuristics in an attempt to find optimal or520

near-optimal solutions with reasonable computational times. In particular, an

adaptation of the NEH heuristic embedded in a GRASP algorithm lead to an

effective and robust algorithm to tackle the problem, obtaining average opti-

mality gaps of less than 1% in low computational times.

525

Future extension of our work could focus on further exploration of problem-

specific characteristics and developing more effective methods and local search

procedures for this problem. Moreover, due to the effectiveness of the meta-

heuristic methods, it could be interesting to analyze their performances by using

other objective criteria such as the total flowtime or total tardiness.530

27

M
IP

m
o
d

el
G

R
A

S
P

N
E

H
se

p
α

=
5
0
%

G
R

A
S

P
N

E
H

se
p
α

=
7
5
%

G
R

A
S

P
N

E
H

se
p
α

=
1
0
0
%

(R
a
n

d
o
m

M
u

lt
is

ta
rt

)

In
st

a
n

ce
s

o
p

t
t(

s)
o
p

t
g
(%

)
t(

s)
it

o
p

t
g
(%

)
t(

s)
it

o
p

t
g
(%

)
t(

s)
it

E
1
0
×

0
3

1
0

1
6

0
.0

9
2
7

1
0
5

1
0

0
.0

0
3
5

1
1
0

1
0

0
.0

0
3
0

1
1
1

E
1
0
×

0
5

1
0

1
6

0
.1

1
3
4

1
1
8

1
0

0
.0

0
3
8

1
1
6

1
0

0
.0

0
3
0

1
1
1

E
1
0
×

0
7

1
0

2
6

0
.1

2
4
8

1
1
7

1
0

0
.0

0
5
0

1
1
4

1
0

0
.0

0
4
8

1
1
0

E
1
0
×

1
1

1
0

1
1

3
0
.2

7
4
6

1
1
2

8
0
.0

2
5
2

1
1
2

1
0

0
.0

0
4
9

1
1
2

E
2
0
×

0
3

1
0

1
5

0
.0

9
4
4

1
1
0

1
0

0
.0

0
4
8

1
1
2

1
0

0
.0

0
4
9

1
1
0

E
2
0
×

0
5

1
0

4
0
5

5
0
.1

2
4
4

1
1
2

7
0
.0

5
4
5

1
2
2

1
0

0
.0

0
4
9

1
1
9

E
2
0
×

0
7

4
2
2
8
9

4
0
.1

4
4
3

1
3
2

5
0
.2

3
5
1

1
3
9

4
0
.1

4
4
8

1
3
6

E
2
0
×

1
1

0
7
5
4
2

0
2
.2

9
4
3

1
4
3

0
1
.2

9
5
2

1
4
6

0
0
.9

3
4
7

1
3
9

E
5
0
×

0
3

1
0

6
5

0
.1

1
4
6

1
0
6

8
0
.0

1
5
1

1
4
0

1
0

0
.0

0
4
9

1
4
8

E
5
0
×

0
5

9
4
9
1
6

4
0
.1

8
4
7

1
5
2

7
0
.0

5
5
1

1
4
5

9
0
.0

2
4
7

1
4
9

E
5
0
×

0
7

4
1
3
6
9
5

0
0
.5

8
5
7

1
4
9

3
0
.1

3
5
9

1
6
0

5
0
.1

9
6
0

1
4
1

E
5
0
×

1
1

0
1
2
7
4
6

0
3
.3

9
5
7

1
6
6

0
4
.0

8
6
1

1
7
4

0
2
.4

3
6
0

1
6
5

a
v

g
a
p

(%
)

0
.6

2
0
.4

9
0
.3

1

T
a
b

le
2
:

A
v
er

a
g
e

re
su

lt
s

fo
r

G
R

A
S

P
N

E
H

se
p

w
it

h
α

=
5
0
%

,
α

=
7
5
%

a
n

d
α

=
1
0
0
%

-
sa

m
e

n
u

m
b

er
o
f

m
a
ch

in
es

.

28

M
IP

m
o
d

el
G

R
A

S
P

N
E

H
se

p
α

=
5
0
%

G
R

A
S

P
N

E
H

se
p
α

=
7
5
%

G
R

A
S

P
N

E
H

se
p
α

=
1
0
0
%

(R
a
n

d
o
m

M
u

lt
is

ta
rt

)

In
st

a
n

ce
s

o
p

t
t(

s)
o
p

t
g
(%

)
t(

s)
it

o
p

t
g
(%

)
t(

s)
it

o
p

t
g
(%

)
t(

s)
it

D
1
0
×

0
3
×

0
5

1
0

1
6

0
.0

7
2
7

1
0
8

8
0
.0

3
2
7

1
1
2

1
0

0
.0

0
2
6

1
1
8

D
1
0
×

0
3
×

0
7

1
0

1
5

0
.5

4
3
3

1
2
0

7
0
.0

5
3
3

1
1
9

1
0

0
.0

0
3
3

1
1
9

D
1
0
×

0
3
×

1
1

1
0

1
6

0
.3

6
4
8

1
2
1

7
0
.0

6
4
5

1
2
2

1
0

0
.0

0
4
6

1
2
1

D
1
0
×

0
5
×

0
7

1
0

1
6

0
.1

4
4
5

1
2
8

9
0
.0

1
4
5

1
2
2

1
0

0
.0

0
4
8

1
2
7

D
1
0
×

0
5
×

1
1

1
0

2
5

0
.0

6
4
6

1
2
6

7
0
.0

3
4
5

1
2
5

1
0

0
.0

0
5
2

1
2
2

D
2
0
×

0
3
×

0
5

1
0

4
5

0
.2

3
4
8

1
2
1

8
0
.0

8
4
9

1
2
6

1
0

0
.0

0
5
3

1
2
9

D
2
0
×

0
3
×

0
7

1
0

5
3

4
0
.3

2
4
4

1
2
7

7
0
.0

5
4
9

1
3
0

1
0

0
.0

0
5
4

1
3
2

D
2
0
×

0
3
×

1
1

5
1
4
2
5
0

0
1
.8

8
5
0

1
4
0

1
0
.6

2
4
7

1
3
8

4
1
.1

4
5
2

1
3
8

D
2
0
×

0
5
×

0
7

1
0

2
0
0

3
0
.1

4
4
9

1
3
5

7
0
.0

4
4
8

1
3
7

1
0

0
.0

0
5
2

1
3
7

D
2
0
×

0
5
×

1
1

4
1
8
2
0
8

0
1
.2

4
5
1

1
4
5

0
0
.6

2
4
8

1
4
6

4
0
.6

4
5
2

1
6
6

D
5
0
×

0
3
×

0
5

1
0

1
5
4

4
0
.0

8
5
8

1
5
6

9
0
.0

1
5
0

1
4
9

1
0

0
.0

0
5
3

1
6
4

a
v

g
a
p

(%
)

0
.4

6
0
.1

4
0
.1

6

T
a
b

le
3
:

A
v
er

a
g
e

re
su

lt
s

fo
r

G
R

A
S

P
N

E
H

se
p

w
it

h
α

=
5
0
%

,
α

=
7
5
%

a
n

d
α

=
1
0
0
%

-
d

iff
er

en
t

n
u

m
b

er
o
f

m
a
ch

in
es

.

29

G
R

A
S

P
N

E
H

se
p
α

=
5
0
%

G
R

A
S

P
N

E
H

se
p
α

=
7
5
%

G
R

A
S

P
N

E
H

se
p
α

=
1
0
0
%

(R
a
n

d
o
m

M
u

lt
is

ta
rt

)

In
st

a
n

ce
s

L
B

U
B

g
(%

)
t(

s)
it

U
B

g
(%

)
t(

s)
it

U
B

g
(%

)
t(

s)
it

E
2
0
×

0
7
−

1
6
4
2

6
4
3

0
.1

6
4
3

1
1
5

6
4
5

0
.4

7
5
2

1
3
6

6
4
3

0
.1

6
5
3

1
2
0

E
2
0
×

0
7
−

2
9
4
6

9
4
6

0
.0

0
4
4

1
6
0

9
4
6

0
.0

0
5
3

1
5
0

9
4
6

0
.0

0
5
0

1
2
6

E
2
0
×

0
7
−

3
1
2
8
4

1
2
8
4

0
.0

0
4
2

1
3
1

1
2
8
4

0
.0

0
5
3

1
2
2

1
2
8
4

0
.0

0
4
3

1
3
4

E
2
0
×

0
7
−

4
7
2
5

7
2
5

0
.0

0
4
2

1
2
9

7
2
5

0
.0

0
4
3

1
4
6

7
2
5

0
.0

0
4
5

1
4
5

E
2
0
×

0
7
−

5
1
0
6
3

1
0
6
6

0
.2

8
4
8

1
3
8

1
0
7
0

0
.6

6
4
6

1
2
5

1
0
7
0

0
.6

6
4
9

1
3
9

E
2
0
×

0
7
−

6
1
3
5
7

1
3
6
2

0
.3

7
4
2

1
3
3

1
3
6
9

0
.8

8
4
8

1
5
5

1
3
5
9

0
.1

5
4
7

1
4
5

E
2
0
×

0
7
−

7
1
3
5
7

1
3
6
2

0
.3

7
4
5

1
3
2

1
3
6
0

0
.2

2
5
5

1
6
5

1
3
6
0

0
.2

2
4
9

1
2
5

E
2
0
×

0
7
−

8
1
3
6
1

1
3
6
3

0
.1

5
4
2

1
3
6

1
3
6
2

0
.0

7
6
2

1
2
8

1
3
6
2

0
.0

7
5
1

1
4
9

E
2
0
×

0
7
−

9
1
3
4
2

1
3
4
3

0
.0

7
4
4

1
3
8

1
3
4
2

0
.0

0
5
4

1
2
4

1
3
4
4

0
.1

5
4
9

1
5
0

E
2
0
×

0
7
−

1
0

6
9
0

6
9
0

0
.0

0
4
3

1
1
3

6
9
0

0
.0

0
4
8

1
3
6

6
9
0

0
.0

0
4
9

1
2
5

T
a
b

le
4
:

D
et

a
il
ed

re
su

lt
s

fo
r

G
R

A
S
P

w
it

h
α

=
5
0
%

,
α

=
7
5
%

,
a
n

d
α

=
1
0
0
%

o
n

in
st

a
n

ce
s

E
2
0
×

0
7
.

30

G
R

A
S

P
N

E
H

se
p
α

=
5
0
%

G
R

A
S

P
N

E
H

se
p
α

=
7
5
%

G
R

A
S

P
N

E
H

se
p
α

=
1
0
0
%

(R
a
n

d
o
m

M
u

lt
is

ta
rt

)

In
st

a
n

ce
s

L
B

U
B

g
(%

)
t(

s)
it

U
B

g
(%

)
t(

s)
it

U
B

g
(%

)
t(

s)
it

E
2
0
×

1
1
−

1
8
0
5

8
0
9

0
.5

0
4
4

1
5
0

8
1
2

0
.8

7
5
0

1
4
3

8
0
8

0
.3

7
4
8

1
4
1

E
2
0
×

1
1
−

2
1
6
0
1

1
6
0
8

0
.4

4
4
5

1
3
5

1
6
0
6

0
.3

1
5
4

1
4
7

1
6
0
4

0
.1

9
4
3

1
3
3

E
2
0
×

1
1
−

3
1
3
7
5

1
3
7
6

0
.0

7
4
2

1
1
5

1
3
8
2

0
.4

4
5
0

1
1
8

1
3
8
0

0
.3

6
4
6

1
4
1

E
2
0
×

1
1
−

4
1
2
2
9

1
2
9
6

5
.4

5
4
4

1
5
7

1
2
3
4

0
.4

1
4
9

1
5
5

1
2
3
4

0
.4

1
4
6

1
5
6

E
2
0
×

1
1
−

5
9
2
6

1
0
1
8

9
.9

3
4
6

1
1
2

9
2
9

0
.3

2
5
3

1
6
0

9
3
0

0
.4

3
4
6

1
4
9

E
2
0
×

1
1
−

6
1
6
8
7

1
7
0
6

1
.1

3
4
0

1
5
5

1
7
0
0

0
.7

7
5
0

1
2
4

1
7
0
0

0
.7

7
4
4

1
3
9

E
2
0
×

1
1
−

7
1
5
9
3

1
6
0
0

0
.4

4
4
0

1
1
7

1
6
0
0

0
.4

4
5
4

1
6
5

1
6
0
0

0
.4

4
4
4

1
4
5

E
2
0
×

1
1
−

8
1
5
8
1

1
6
0
8

1
.7

1
4
3

1
6
9

1
6
0
0

1
.2

0
5
4

1
7
4

1
6
0
6

1
.5

8
5
6

1
1
3

E
2
0
×

1
1
−

9
1
5
9
9

1
6
3
8

2
.4

4
4
4

1
3
2

1
6
3
9

2
.5

0
5
5

1
3
7

1
6
3
5

2
.2

5
5
1

1
2
6

E
2
0
×

1
1
−

1
0

1
6
0
0

1
6
1
3

0
.8

1
4
3

1
8
4

1
6
9
0

5
.6

2
4
9

1
3
3

1
6
4
0

2
.5

0
4
7

1
4
8

T
a
b

le
5
:

D
et

a
il
ed

re
su

lt
s

fo
r

G
R

A
S
P

w
it

h
α

=
5
0
%

,
α

=
7
5
%

,
a
n

d
α

=
1
0
0
%

o
n

in
st

a
n

ce
s

E
2
0
×

1
1
.

31

G
R

A
S

P
N

E
H

se
p
α

=
5
0
%

G
R

A
S

P
N

E
H

se
p
α

=
7
5
%

G
R

A
S

P
N

E
H

se
p
α

=
1
0
0
%

(R
a
n

d
o
m

M
u

lt
is

ta
rt

)

In
st

a
n

ce
s

L
B

U
B

g
(%

)
t(

s)
it

U
B

g
(%

)
t(

s)
it

U
B

g
(%

)
t(

s)
it

E
5
0
×

0
7
−

1
2
0
8
1

2
1
2
8

2
.2

6
5
7

1
6
6

2
0
8
3

0
.1

0
5
8

1
7
2

2
0
9
2

0
.5

3
5
9

1
2
9

E
5
0
×

0
7
−

2
1
4
5
5

1
4
6
0

0
.3

4
5
5

1
6
6

1
4
5
6

0
.0

7
5
7

1
7
0

1
4
5
5

0
.0

0
5
8

1
4
4

E
5
0
×

0
7
−

3
9
4
5

9
4
6

0
.1

1
5
8

1
2
4

9
4
5

0
.0

0
5
9

1
3
9

9
4
5

0
.0

0
6
1

1
6
5

E
5
0
×

0
7
−

4
1
6
0
3

1
6
0
5

0
.1

2
5
8

1
2
7

1
6
0
4

0
.0

6
5
9

1
6
4

1
6
0
3

0
.0

0
5
7

1
4
9

E
5
0
×

0
7
−

5
2
0
6
4

2
0
6
6

0
.1

0
5
7

1
3
3

2
0
6
4

0
.0

0
5
9

1
3
9

2
0
6
4

0
.0

0
6
2

1
2
2

E
5
0
×

0
7
−

6
2
1
8
5

2
1
8
6

0
.0

5
5
7

1
5
0

2
1
8
6

0
.0

5
5
7

1
8
3

2
1
8
6

0
.0

5
6
4

1
3
7

E
5
0
×

0
7
−

7
1
4
7
5

1
4
7
6

0
.0

7
5
8

1
4
1

1
4
7
5

0
.0

0
6
0

1
7
5

1
4
7
5

0
.0

0
6
1

1
4
3

E
5
0
×

0
7
−

8
2
2
2
4

2
2
4
9

1
.1

2
5
7

1
3
3

2
2
3
8

0
.6

3
5
9

1
7
3

2
2
3
8

0
.6

3
6
0

1
5
4

E
5
0
×

0
7
−

9
1
5
7
5

1
6
0
0

1
.5

9
5
8

1
8
0

1
5
8
0

0
.3

2
6
0

1
5
9

1
5
8
2

0
.4

4
6
1

1
2
7

E
5
0
×

0
7
−

1
0

1
6
4
3

1
6
4
4

0
.0

6
5
7

1
7
0

1
6
4
5

0
.1

2
6
0

1
2
5

1
6
4
8

0
.3

0
6
0

1
3
8

T
a
b

le
6
:

D
et

a
il
ed

re
su

lt
s

fo
r

G
R

A
S
P

w
it

h
α

=
5
0
%

,
α

=
7
5
%

,
a
n

d
α

=
1
0
0
%

o
n

in
st

a
n

ce
s

E
5
0
×

0
7
.

32

G
R

A
S

P
N

E
H

se
p
α

=
5
0
%

G
R

A
S

P
N

E
H

se
p
α

=
7
5
%

G
R

A
S

P
N

E
H

se
p
α

=
1
0
0
%

(R
a
n

d
o
m

M
u

lt
is

ta
rt

)

In
st

a
n

ce
s

L
B

U
B

g
(%

)
t(

s)
it

U
B

g
(%

)
t(

s)
it

U
B

g
(%

)
t(

s)
it

E
5
0
×

1
1
−

1
2
4
3
7

2
5
4
8

4
.5

5
5
4

1
8
3

2
5
8
2

5
.9

5
6
4

1
5
0

2
5
1
8

3
.3

2
4
9

1
7
2

E
5
0
×

1
1
−

2
2
5
9
6

2
7
6
0

6
.3

2
5
9

1
8
9

2
6
2
4

1
.0

8
6
2

1
8
1

2
6
6
4

2
.6

2
5
4

1
6
4

E
5
0
×

1
1
−

3
2
5
9
0

2
6
6
2

2
.7

8
5
9

1
5
3

2
7
7
8

7
.2

6
6
0

1
5
3

2
6
0
6

0
.6

2
5
8

1
6
5

E
5
0
×

1
1
−

4
2
7
0
5

2
7
3
6

1
.1

5
5
9

1
6
2

2
7
3
6

1
.1

5
6
1

1
6
2

2
7
3
6

1
.1

5
6
1

1
7
6

E
5
0
×

1
1
−

5
2
6
1
3

2
8
0
2

7
.2

3
5
6

1
8
4

2
8
0
0

7
.1

6
6
1

1
7
6

2
7
0
0

3
.3

3
6
0

1
8
5

E
5
0
×

1
1
−

6
3
1
9
8

3
2
2
5

0
.8

4
5
7

1
5
6

3
4
5
6

8
.0

7
6
3

1
8
3

3
3
5
8

5
.0

0
6
3

1
7
1

E
5
0
×

1
1
−

7
2
5
5
4

2
5
5
7

0
.1

2
5
7

1
5
2

2
5
5
6

0
.0

8
6
0

1
8
3

2
5
5
6

0
.0

8
6
6

1
6
2

E
5
0
×

1
1
−

8
2
4
1
2

2
5
4
9

5
.6

8
5
6

1
5
5

2
5
1
4

4
.2

3
6
0

1
8
7

2
5
1
4

4
.2

3
6
3

1
6
4

E
5
0
×

1
1
−

9
2
9
8
4

3
0
6
0

2
.5

5
5
8

1
6
4

3
0
2
2

1
.2

7
6
5

1
7
5

3
0
2
2

1
.2

7
6
2

1
6
7

E
5
0
×

1
1
−

1
0

3
0
6
7

3
1
5
0

2
.7

1
5
8

1
6
7

3
2
0
8

4
.6

0
5
9

1
8
9

3
1
5
0

2
.7

1
6
3

1
2
8

T
a
b

le
7
:

D
et

a
il
ed

re
su

lt
s

fo
r

G
R

A
S
P

w
it

h
α

=
5
0
%

,
α

=
7
5
%

,
a
n

d
α

=
1
0
0
%

o
n

in
st

a
n

ce
s

E
5
0
×

1
1
.

33

G
R

A
S

P
N

E
H

se
p
α

=
5
0
%

G
R

A
S

P
N

E
H

se
p
α

=
7
5
%

G
R

A
S

P
N

E
H

se
p
α

=
1
0
0
%

(R
a
n

d
o
m

M
u

lt
is

ta
rt

)

In
st

a
n

ce
s

L
B

U
B

g
(%

)
t(

s)
it

U
B

g
(%

)
t(

s)
it

U
B

g
(%

)
t(

s)
it

D
2
0
×

0
3
×

1
1
−

1
7
2
6

7
6
8

5
.7

8
4
6

1
4
4

7
3
4

1
.1

0
4
6

1
3
1

7
3
8

1
.6

5
5
6

1
2
8

D
2
0
×

0
3
×

1
1
−

2
1
1
2
2

1
1
2
5

0
.2

7
4
6

1
5
6

1
1
2
4

0
.1

8
4
5

1
3
9

1
1
2
4

0
.1

8
5
7

1
1
9

D
2
0
×

0
3
×

1
1
−

3
1
5
1
6

1
5
2
2

0
.4

0
4
8

1
4
5

1
5
1
8

0
.1

3
4
8

1
1
8

1
5
1
6

0
.0

0
5
1

1
5
3

D
2
0
×

0
3
×

1
1
−

4
8
3
6

8
4
4

0
.9

6
5
6

1
5
0

8
3
7

0
.1

2
4
4

1
2
2

8
3
6

0
.0

0
5
1

1
4
8

D
2
0
×

0
3
×

1
1
−

5
1
1
7
1

1
1
8
2

0
.9

4
5
1

1
1
8

1
1
9
0

1
.6

2
4
8

1
5
5

1
2
2
4

4
.5

3
5
1

1
3
7

D
2
0
×

0
3
×

1
1
−

6
7
7
5

7
8
5

1
.2

9
5
1

1
2
6

7
7
6

0
.1

3
4
8

1
3
4

7
7
5

0
.0

0
4
9

1
3
9

D
2
0
×

0
3
×

1
1
−

7
8
0
4

8
4
0

4
.4

8
5
0

1
3
1

8
1
4

1
.2

4
4
5

1
4
0

8
1
6

1
.4

9
4
9

1
3
6

D
2
0
×

0
3
×

1
1
−

8
8
1
3

8
2
6

1
.6

0
5
5

1
5
2

8
1
3

0
.0

0
4
6

1
3
7

8
1
3

0
.0

0
5
2

1
2
8

D
2
0
×

0
3
×

1
1
−

9
7
9
8

8
0
0

0
.2

5
5
3

1
5
4

8
0
0

0
.2

5
4
9

1
4
6

8
0
8

1
.2

5
5
1

1
5
6

D
2
0
×

0
3
×

1
1
−

1
0

1
1
7
7

1
2
1
0

2
.8

0
4
8

1
2
3

1
1
9
4

1
.4

4
4
7

1
5
1

1
2
0
4

2
.2

9
5
7

1
3
3

T
a
b

le
8
:

D
et

a
il
ed

re
su

lt
s

fo
r

G
R

A
S
P

w
it

h
α

=
5
0
%

,
α

=
7
5
%

,
a
n

d
α

=
1
0
0
%

o
n

in
st

a
n

ce
s

D
2
0
×

0
3
×

1
1
.

34

G
R

A
S

P
N

E
H

se
p
α

=
5
0
%

G
R

A
S

P
N

E
H

se
p
α

=
7
5
%

G
R

A
S

P
N

E
H

se
p
α

=
1
0
0
%

(R
a
n

d
o
m

M
u

lt
is

ta
rt

)

In
st

a
n

ce
s

L
B

U
B

g
(%

)
t(

s)
it

U
B

g
(%

)
t(

s)
it

U
B

g
(%

)
t(

s)
it

D
2
0
×

0
5
×

1
1
−

1
1
0
7
1

1
0
8
3

1
.1

2
5
4

1
2
6

1
0
8
0

0
.8

4
4
7

1
5
0

1
0
7
8

0
.6

5
5
3

1
7
3

D
2
0
×

0
5
×

1
1
−

2
1
2
4
6

1
2
5
9

1
.0

4
5
3

1
6
0

1
2
5
0

0
.3

2
5
0

1
4
3

1
2
5
5

0
.7

2
5
1

1
6
2

D
2
0
×

0
5
×

1
1
−

3
1
2
2
6

1
2
5
5

2
.3

6
4
8

1
3
7

1
2
5
0

1
.9

6
5
4

1
7
2

1
2
4
4

1
.4

7
5
4

1
5
3

D
2
0
×

0
5
×

1
1
−

4
1
2
9
3

1
2
9
6

0
.2

3
5
3

1
3
4

1
2
9
4

0
.0

8
4
7

1
3
6

1
2
9
3

0
.0

0
5
1

1
6
8

D
2
0
×

0
5
×

1
1
−

5
1
2
1
4

1
2
2
2

0
.6

6
5
2

1
4
2

1
2
1
6

0
.1

6
4
7

1
4
4

1
2
1
4

0
.0

0
5
2

1
7
5

D
2
0
×

0
5
×

1
1
−

6
1
3
0
4

1
3
3
0

1
.9

9
5
4

1
3
5

1
3
0
8

0
.3

1
4
7

1
3
4

1
3
0
8

0
.3

1
5
1

1
6
6

D
2
0
×

0
5
×

1
1
−

7
1
3
8
8

1
3
9
2

0
.2

9
4
8

1
5
3

1
3
8
9

0
.0

7
4
7

1
2
9

1
3
8
8

0
.0

0
5
6

1
7
4

D
2
0
×

0
5
×

1
1
−

8
1
6
3
9

1
6
7
4

2
.1

3
5
2

1
4
9

1
6
4
4

0
.3

0
4
6

1
3
7

1
6
6
2

1
.4

0
5
3

1
6
4

D
2
0
×

0
5
×

1
1
−

9
1
2
1
5

1
2
4
0

2
.0

6
4
7

1
5
5

1
2
4
0

2
.0

6
4
9

1
5
6

1
2
3
8

1
.8

9
5
0

1
5
9

D
2
0
×

0
5
×

1
1
−

1
0

1
5
6
2

1
5
6
8

0
.3

8
5
4

1
6
2

1
5
6
3

0
.0

6
4
7

1
6
3

1
5
6
2

0
.0

0
5
2

1
6
4

T
a
b

le
9
:

D
et

a
il
ed

re
su

lt
s

fo
r

G
R

A
S
P

w
it

h
α

=
5
0
%

,
α

=
7
5
%

,
a
n

d
α

=
1
0
0
%

o
n

in
st

a
n

ce
s

D
2
0
×

0
5
×

1
1
.

35

Acknowledgments: This research was partially supported by Brazilian fund-

ing agencies CAPES and CNPq.

References

[1] S. M. Johnson, Optimal two- and three-stage production schedules with535

setup times included, Naval Research Logistics Quarterly 1 (1954) 61–68.

[2] J. N. D. Gupta, E. F. Stafford, Flowshop scheduling research after five

decades, European Journal of Operational Research 169 (2006) 699–711.

[3] M. R. Garey, D. S. Johnson, R. Sethi, The complexity of flowshop and

jobshop scheduling, Mathematics of Operations Research 1 (1976) 117–129.540

[4] F. T. Tseng, E. F. Stafford Jr., J. N. D. Gupta, An empirical analysis of

integer programming formulations for the permutation flowshop, Omega 32

(2004) 285–293.

[5] J. V. Frasch, S. O. Krumke, S. Westphal, MIP formulations for flow-

shop scheduling with limited buffers, Theory and Practice of Algorithms in545

(Computer) Systems 6595 (2011) 127–138.

[6] B. Naderi, M. Aminnayeri, M. Piri, M. H. H. Yazdi, Multi-objective no-

wait flowshop scheduling problems: models and algorithms, International

Journal of Production Research 50 (10) (2012) 2592–2608. doi:10.1080/

00207543.2010.543937.550

[7] D. P. Ronconi, E. G. Birgin, Mixed-integer programming models for flow-

shop scheduling problems minimizing the total earliness and tardiness, in:

R. Z. Ŕıos-Mercado, Y. A. Ŕıos-Soĺıs (Eds.), Just-in-Time Systems, Vol. 60,

Springer, 2012, pp. 91–105.

[8] F. Hnaien, F. Yalaoui, A. Mhadhbi, Makespan minimization on a two-555

machine flowshop with an availability constraint on the first machine, In-

ternational Journal of Production Economics 164 (2015) 95–104.

36

[9] G. Mainieri, D. Ronconi, New heuristics for total tardiness minimization

in a flexible flowshop, Optimization Letters 7 (2013) 665–684.

[10] M. Nawaz, E. E. Enscore, I. Ham, A heuristic algorithm for the m-machine,560

n-job flow-shop sequencing problem, Omega 11 (1983) 91–95.

[11] S. F. Rad, R. Ruiz, N. Boroojerdian, New high performing heuristics for

minimizing makespan in permutation flowshops, Omega 37 (2009) 331–345.

[12] M. Widmer, A. Hertz, A new heuristic method for the flow shop sequencing

problem, European Journal of Operational Research 41 (1989) 186–193.565

[13] A. Allahverdi, H. Aydilek, Heuristics for the two-machine flowshop schedul-

ing problem to minimise makespan with bounded processing times, Inter-

national Journal of Production Research 48 (2010) 6367–6385.

[14] Q.-K. Pan, L. Wang, L. Gao, W. Li, An effective hybrid discrete differential

evolution algorithm for the flow shop scheduling with intermediate buffers,570

Information Sciences 181 (2011) 668–685.

[15] H. Allaoui, A. Artiba, Scheduling two-stage hybrid flow shop with availabil-

ity constraints, Computers & Operations Research 33 (2006) 1399–1419.

[16] V. Fernandez-Viagas, J. Framinan, Neh-based heuristics for the permuta-

tion flowshop scheduling problem to minimise total tardiness, Computers575

& Operations Research 60 (2015) 27–36.

[17] C. Low, J. Yeh, K. Huang, A robust simulated annealing heuristic for flow

shop scheduling problems, The International Journal of Advanced Manu-

facturing Technology 23 (2004) 762–767.

[18] A. C. Nearchou, Flow-shop sequencing using hybrid simulated annealing,580

Journal of Intelligent manufacturing 15 (2004) 317–328.

[19] H. Mirsanei, M. Zandieh, M. J. Moayed, M. Khabbazi, A simulated an-

nealing algorithm approach to hybrid flow shop scheduling with sequence-

37

dependent setup times, Journal of Intelligent Manufacturing 22 (2011) 965–

978.585

[20] B. Santosa, A. Rofiq, The development of simulated annealing algorithm

for hybrid flow shop scheduling problem to minimize makespan and total

tardiness, in: Proceedings of the 2014 International Conference on Indus-

trial Engineering and Operations Management, 2014, pp. 1348–1355.

[21] G. Prabhaharan, B. S. H. Khan, L. Rakesh, Implementation of GRASP in590

flow shop scheduling, The International Journal of Advanced Manufactur-

ing Technology 30 (2006) 1126–1131.

[22] B. Shahul Hamid Khan, G. Prabhaharan, P. Asokan, A grasp algorithm for

m-machine flowshop scheduling problem with bicriteria of makespan and

maximum tardiness, International Journal of Computer Mathematics 84595

(2007) 1731–1741.

[23] K. Chakravarthy, C. Rajendran, A heuristic for scheduling in a flowshop

with the bicriteria of makespan and maximum tardiness minimization, Pro-

duction Planning & Control 10 (1999) 707–714.

[24] P. Sivasankaran, T. Sornakumar, R. Panneerselvam, Design and compar-600

ison of simulated annealing algorithm and grasp to minimize makespan

in single machine scheduling with unrelated parallel machines, Intelligent

Information Management 2 (2010) 406–416.

[25] The distributed permutation flowshop scheduling problem, Computers &

Operations Research 37 (4) (2010) 754 – 768. doi:https://doi.org/10.605

1016/j.cor.2009.06.019.

[26] A novel chemical reaction optimization for the distributed permutation

flowshop scheduling problem with makespan criterion, Computers & In-

dustrial Engineering 111 (2017) 239 – 250. doi:https://doi.org/10.

1016/j.cie.2017.07.020.610

38

[27] Iterated greedy methods for the distributed permutation flowshop schedul-

ing problem, Omega 83 (2019) 213 – 222. doi:https://doi.org/10.1016/

j.omega.2018.03.004.

[28] S. Hatami, R. Ruiz, C. Andrés Romano, Two simple constructive algo-

rithms for the distributed assembly permutation flowshop scheduling prob-615

lem, in: C. Hernández, A. López-Paredes, J. M. Pérez-Ŕıos (Eds.), Manag-

ing Complexity, Springer International Publishing, Cham, 2014, pp. 139–

145.

[29] X. Li, X. Zhang, M. Yin, J. Wang, A genetic algorithm for the dis-

tributed assembly permutation flowshop scheduling problem, in: 2015620

IEEE Congress on Evolutionary Computation (CEC), 2015, pp. 3096–3101.

doi:10.1109/CEC.2015.7257275.

[30] Heuristics and metaheuristics for the distributed assembly permutation

flowshop scheduling problem with sequence dependent setup times, Inter-

national Journal of Production Economics 169 (2015) 76 – 88. doi:https:625

//doi.org/10.1016/j.ijpe.2015.07.027.

[31] An effective hybrid biogeography-based optimization algorithm for the dis-

tributed assembly permutation flow-shop scheduling problem, Computers

& Industrial Engineering 97 (2016) 128 – 136. doi:https://doi.org/10.

1016/j.cie.2016.05.005.630

[32] Effective invasive weed optimization algorithms for distributed assembly

permutation flowshop problem with total flowtime criterion, Swarm and

Evolutionary Computation 44 (2019) 64 – 73. doi:https://doi.org/10.

1016/j.swevo.2018.12.001.

[33] Deterministic assembly scheduling problems: A review and classification635

of concurrent-type scheduling models and solution procedures, European

Journal of Operational Research 273 (2) (2019) 401 – 417. doi:https:

//doi.org/10.1016/j.ejor.2018.04.033.

39

[34] I. F. Guimarães, Y. Ouazene, M. C. de Souza, F. Yalaoui, Semi-parallel

flow shop with a final synchronization operation scheduling problem, IFAC-640

PapersOnLine 49 (2016) 1032–1037.

[35] H. M. Wagner, An integer linear-programming model for machine schedul-

ing, Naval Research Logistics Quarterly 6 (1959) 131–140.

[36] E. F. Stafford, On the development of a mixed-integer linear programming

model for the flowshop sequencing problem, Journal of the Operational645

Research Society 39 (1988) 1163–1174.

[37] F. T. Tseng, E. F. Stafford, Two milp models for the n × m sdst flow-

shop sequencing problem, International Journal of Production Research 39

(2001) 1777 – 809.

[38] J. C. Arroyo, A. A. de Souza Pereira, A grasp heuristic for the multi-650

objective permutation flowshop scheduling problem, The International

Journal of Advanced Manufacturing Technology 55 (2011) 741–753.

[39] J. Hurka la, A. Hurka la, Effective design of the simulated annealing algo-

rithm for the flowshop problem with minimum makespan criterion, Journal

of Telecommunications and Information Technology 2 (2012) 92–98.655

[40] P. Jaros law, S. Czes law, Ż. Dominik, Optimizing bicriteria flow shop

scheduling problem by simulated annealing algorithm, Procedia Computer

Science 18 (2013) 936–945.

[41] M. G. C. Resende, C. C. Ribeiro, Greedy randomized adaptive search pro-

cedures: Advances, hybridizations, and applications, Handbook of Meta-660

heuristics 146 (2010) 283–319.

[42] E. Taillard, Benchmarks for basic scheduling problems, European Journal

of Operational Research 64 (1993) 278–285.

40

