Irce F G Guimarães

Yassine Ouazene
email: yassine.ouazene@utt.fr

Mauricio C De Souza

Farouk Yalaoui

Flowshop scheduling problem with parallel semi-lines and final synchronization operation

Keywords: flowshop scheduling, synchronization operation, heuristic and metaheuristic methods, GRASP algorithm, simulated annealing algorithm

This paper deals with a particular variant of the flowshop scheduling problem motivated by a real case configuration issued from an electro-electronic material industry. The shop floor environment is composed of two parallel semi-lines and a final synchronization operation. The jobs must follow the same technological order through the machines on each parallel semi-line. However, the operations on each semi-line are independent. The final synchronization operation, operated by a dedicated machine, can only start when the job is finished on both semi-lines. The objective is to determine a schedule that minimizes the makespan for a given set of jobs. Since this problem class is NP-hard in the strong sense, constructive heuristic procedures and metaheuristics methods are introduced to achieve optimal or near-optimal solutions. The performances of the proposed GRASP and the Simulated Annealing algorithms are evaluated and compared with the adaptation of two well-known heuristics. Computational experiments show that the proposed metaheuristics provide very good results in low computational times.

Introduction

In this paper, we consider a variant of the permutation flowshop scheduling problem. The classical permutation flowshop consists of n jobs to be processed among a set of m machines arranged in series. The jobs must follow the same technological order through the machines, and each job has a specific processing time in each machine. The goal is to determine, among all the possible n! sequences, one that optimizes a certain performance measure. The most commonly used is the minimization of the total completion time (makespan).

We analyze a variant of the permutation flowshop problem motivated by a practical application found in the welding sector of an electro-electronics industry. The shop floor environment is composed of two parallel semi-lines and a final synchronization operation. Each semi-line produces one of the halves of a job. These halves are assembled in the final synchronization operation. The halves of the respective jobs must be processed in the same order in each semiline, which must be followed in the synchronization operation as well. Figure 1 shows a scheme of the studied environment. In this figure, the semi-lines process first the halves of job 2, then those of job 1, and finally those of job 3. This same order is followed in the synchronization operation. An operation in a machine of a semi-line does not need to start at the same time as an operation in the machine of the other semi-line. However, the final synchronization operation of a job can only start when its halves are completed in both semi-lines. The objective is to minimize the makespan.

We consider the cases where the semi-lines have (i) the same number and (ii) different number of machines. A practical example of a process with different number of machines in each semi-line is found in the production of circuit breakers, where one semi-line with two machines processes the contact blade, and the other semi-line with three machines processes the bimetal. When these two semi-products are completed, they are assembled in the synchronization operation.

Illustrative examples

Figure 2 shows the Gantt chart of an optimal sequence for a small illustrative example with 2 jobs, yellow and green, 2 machines in each semi-line l, l = 1, 2, and the synchronization operation. We denote by i l k , the machine k = 1, 2 of semi-line l, and by i s the synchronization operation. Observe that a half of a job can start in a machine i 1 k independently of when the other half starts in a machine i 2 k . However, even when a half of a job is completed at semi-line l = 1 it must wait for the other half to be completed at semi-line l = 2 before the synchronization operation can start.

Let C * be the optimum makespan of a given instance of the variant of the permutation flowshop under study, and let C l be the optimum makespan of an instance of the classical permutation flowshop considering the machines of semi-line l along with the synchronization operation. In general we have that C * > C l , l = 1, 2. Let us consider a small example with 3 jobs where each semi- line l has 2 machines, plus the synchronization operation. Table 1 shows the processing times of each job in each machine i l k , k = 1, 2, and in the synchronization machine i s . The optimal makespan of the permutation flowshop instance i 1 1 , i 1 2 , i s is 94, which can be obtained with the sequence j 1 , j 3 , j 2 . The makespan of this sequence in the problem with two semi-lines and the synchronization operation is 96. Alternatively, the optimal makespan of the permutation flowshop instance i 2 1 , i 2 2 , i s is 93, with the sequence j 2 , j 1 , j 3 , and the makespan in the problem with two semi-lines and the synchronization operation is 109. But the optimal makespan of the permutation flowshop with the two semi-lines and the synchronization operation is 95, which can be obtained with the sequence j 3 , j 2 , j 1 (not optimal for any of the two instances given by the semi-lines considered independently). This is also observed when the semi-lines have different number of machines.

Indeed, let us just consider the instance obtained by removing the first machine l = 1 and 2 machines in semi-line l = 2, plus the synchronization operation.

i 1 1 from semi-line l = 1 in
The optimal makespan is still 95, which can be obtained with the same sequence j 3 , j 2 , j 1 .

Related literature

Many approaches have been proposed for the flowshop problem since Johnson [START_REF] Johnson | Optimal two-and three-stage production schedules with setup times included[END_REF] presented the resolution for the flowshop considering two machines.

Gupta and Stafford [START_REF] Gupta | Flowshop scheduling research after five decades[END_REF] provide a historical perspective of the research in the flowshop problem and its variants. The well-known algorithm of Johnson [START_REF] Johnson | Optimal two-and three-stage production schedules with setup times included[END_REF] finds in polynomial time an optimal sequence for a set of n jobs to be processed in m = 2 machines. A major difficulty is to find an optimal solution when the number of machines is greater than two, since this problem is known be strongly NP-Hard (Garey et al. [START_REF] Garey | The complexity of flowshop and jobshop scheduling[END_REF]). Thus, studies have been developed in the literature of flowshop scheduling considering exact and heuristic techniques as well.

Permutation flowshop

Tseng et al. [START_REF] Tseng | An empirical analysis of integer programming formulations for the permutation flowshop[END_REF] report a thorough empirical analysis to assess the effectiveness of mixed-integer linear programming (MIP) formulations for the permutation flowshop. We briefly give some more recent examples of the use of MIP models to address flowshop problems in the literature. Frach et al. [START_REF] Frasch | MIP formulations for flowshop scheduling with limited buffers[END_REF] also present a MIP to solve flowshop problems with a limited number of intermediate buffers. Naderi et al. [START_REF] Naderi | Multi-objective nowait flowshop scheduling problems: models and algorithms[END_REF] propose a MIP to minimize the makespan, and the total tardiness in a flowshop environment. Ronconi and Bergin [START_REF] Ronconi | Mixed-integer programming models for flowshop scheduling problems minimizing the total earliness and tardiness[END_REF] address by MIP the problem of minimizing the total earliness and tardiness of jobs for the flowshop problem with unlimited and also with zero buffer. Hnaien et al. [START_REF] Hnaien | Makespan minimization on a twomachine flowshop with an availability constraint on the first machine[END_REF] propose two MIP models for the two-machine flowshop scheduling problem with unavailability constraint in the first machine in order to minimize the makespan. The authors propose a branch and bound algorithm based on new lower bounds and heuristics that performs better than the two MIP models.

Heuristics have been proposed in the literature to obtain good solutions in a short computational time, see, for instance, Mainieri and Ronconi [START_REF] Mainieri | New heuristics for total tardiness minimization in a flexible flowshop[END_REF], Nawaz et al. [START_REF] Nawaz | A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[END_REF], Rad et al. [START_REF] Rad | New high performing heuristics for minimizing makespan in permutation flowshops[END_REF], and Widmer and Hertz [START_REF] Widmer | A new heuristic method for the flow shop sequencing problem[END_REF]. Johnson's algorithm was adapted by Allahverdi et al. [START_REF] Allahverdi | Heuristics for the two-machine flowshop scheduling problem to minimise makespan with bounded processing times[END_REF] to minimize the total completion time in twomachines flowshop with limited and random processing times. Pan et al. [START_REF] Pan | An effective hybrid discrete differential evolution algorithm for the flow shop scheduling with intermediate buffers[END_REF] tackle the flowshop problem with zero buffer. In that study, the heuristic of Nawaz et al. [START_REF] Nawaz | A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[END_REF] exploit specific characteristics of the problem to find good solutions with little computational effort. Allaoui and Artiba [START_REF] Allaoui | Scheduling two-stage hybrid flow shop with availability constraints[END_REF] aim to minimize the makespan in a two stage hybrid flowshop with a single machine in the first stage and m machines in the second stage. Fernandez-Viagas and Framinan [START_REF] Fernandez-Viagas | Neh-based heuristics for the permutation flowshop scheduling problem to minimise total tardiness[END_REF] propose efficient tie-breaking mechanisms to be used in the heuristic of Nawaz et al. [START_REF] Nawaz | A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[END_REF] when dealing with total tardiness. Metaheuristic approaches have also been proposed in the literature to solve large instances in reasonable computational time. Simulated annealing has been applied by Low et al. [START_REF] Low | A robust simulated annealing heuristic for flow shop scheduling problems[END_REF] and by Nearchou [START_REF] Nearchou | Flow-shop sequencing using hybrid simulated annealing[END_REF] to minimize the makespan in the flowshop problem, and by Mirsanei et al. [START_REF] Mirsanei | A simulated annealing algorithm approach to hybrid flow shop scheduling with sequence-dependent setup times[END_REF] and by Santosa and Rofiq [START_REF] Santosa | The development of simulated annealing algorithm for hybrid flow shop scheduling problem to minimize makespan and total tardiness[END_REF] to the hybrid flowshop problem with m-machines in each stage. GRASP has been applied by Prabhaharan et al. [START_REF] Prabhaharan | Implementation of GRASP in flow shop scheduling[END_REF]. Shahul Hamid Khan et al. [START_REF] Shahul Hamid Khan | A grasp algorithm for m-machine flowshop scheduling problem with bicriteria of makespan and maximum tardiness[END_REF] address with GRASP a bicriteria flowshop where the objective is to minimize the weighted sum of makespan and maximum tardiness. Their algorithm was able to outperform a simulated annealing previously proposed by Chakravarthy and Rajendran [START_REF] Chakravarthy | A heuristic for scheduling in a flowshop with the bicriteria of makespan and maximum tardiness minimization[END_REF] for the same problem. On the other hand, in the computational experiments conducted by Sivasankaran et al. [START_REF] Sivasankaran | Design and comparison of simulated annealing algorithm and grasp to minimize makespan in single machine scheduling with unrelated parallel machines[END_REF] simulated annealing outperformed GRASP for a single-stage scheduling problem.

Distributed permutation flowshop

In 2010, Naderi and Ruiz [START_REF]The distributed permutation flowshop scheduling problem[END_REF] introduced a new generalization of the regular permutation flowshop scheduling problem referred to as the distributed per- Lin and Zhang [START_REF]An effective hybrid biogeography-based optimization algorithm for the distributed assembly permutation flow-shop scheduling problem[END_REF] to solve the DAPFSP with the objective of minimizing the makespan. The performance of their approach was evaluated based on two sets of benchmark instances issued from the literature. Compared to the bestknown results, new best solutions for 71 small-sized instances and 91 large-sized instances were found.

To the best of our knowledge, Sang et al. [START_REF]Effective invasive weed optimization algorithms for distributed assembly permutation flowshop problem with total flowtime criterion[END_REF] addressed in 2019 the first paper attempt to minimize total flowtime for the distributed assembly permutation flowshop scheduling problem. They proposed three variants of the discrete invasive weed optimization approach to solve the problem. To test the proposed algorithms, they carried out a comprehensive experiment based on 810 instances issued from literature. Numerical results and statistical analysis show that the presented algorithms perform substantially better than the other algorithms in for solving the DAPFSP with the total flowtime criterion.

For a complete review of the literature of the different variants of deterministic assembly scheduling problems, reader can refer the excellent work of Framinan et al. [START_REF]Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures[END_REF]. The authors reviewed a large number of papers in order to provide a comprehensive overview on scheduling with assembly operations.

They proposed a unified notation for assembly scheduling models that encompass all concurrent-type scheduling problems. Using this notation, the existing contributions are reviewed and classified into a single framework, so a comprehensive, unified picture of the field is addressed.

Structure of the paper

Based on the studies aforementioned, we propose, for the variant of the flowshop analyzed in this paper: a MIP model; heuristics based on the algorithms proposed by Johnson [START_REF] Johnson | Optimal two-and three-stage production schedules with setup times included[END_REF] and by Nawaz et al. [START_REF] Nawaz | A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[END_REF]; and GRASP and simulated annealing metaheuristics. We report computational experiments on random instances generated according to procedures used to generate benchmark instances found in the literature for the permutation flowshop. This work is an extension of the preliminary results in [START_REF] Guimarães | Semi-parallel flow shop with a final synchronization operation scheduling problem[END_REF]. The paper is organized as follows.

In Section 2 the mathematical model is presented. The proposed heuristics and metaheuristics are presented in Section 3 and Section 4, respectively. Computational experiments are reported in Section 5, and concluding remarks drawn in Section 6.

Mathematical formulation

We propose a MIP formulation based on the previous works developed by Wagner [35] and by Stafford [START_REF] Stafford | On the development of a mixed-integer linear programming model for the flowshop sequencing problem[END_REF]. According to the study conducted by Tseng et al. [START_REF] Tseng | An empirical analysis of integer programming formulations for the permutation flowshop[END_REF], such kind of formulation is the best for permutation flowshop. Let n be he number of jobs, and m l be the number of machines in semi-line l = 1, 2

(before the synchronizing operation). In our model, a unique permutation has to be chosen for two flowshop problems with m l +1 machines each subject to the additional constraint that the completion times of each job on machines m 1 + 1 and m 2 + 1 are the same. Let p l ki be the processing time of job i on machine k of the problem l (p (m1+1)i = p (m2+1)i). The model can be generalized for an arbitrary number L of semi-lines. Thus, assuming, without loss of generality, l = 1, 2 flowshop problems with m l + 1 machines each, the variables are defined as follows: z ij binary variable specifies if job i is assigned to the j th position of the permutation (common two both l = 1, 2 flowshop problems); The makespan is given by the completion time of the job in the last position of the permutation. The model is written as follows:

min C 1 n (1) n j=1 z ij = 1; i = 1, . . . , n (2)
n i=1 z ij = 1; j = 1, . . . , n (3)
n i=1 p l ri z ij+1 +y l j+1r +x l j+1r = y l jr + n i=1 p l r+1i z ij +x l j+1r+1 ; l = 1, 2, j = 1, . . . , n-1; r = 1, . . . , m l (4) k-1 r=1 n i=1 p l ri z i1 = x l 1k ; l = 1, 2, k = 2, . . . , m l (5) mv r=1 n i=1 p v ri z i1 ≤ x l 1m l +1 ; l, v = 1, 2 (6)
y l 1k = 0; l = 1, 2, k = 1, . . . , m l -1 (7) x l 1m l +1 -x l 1m l + n i=1 p m l i z i1 = y l 1m l ; l = 1, 2 (8)
j u=1 n i=1 p l m l +1i z iu + j u=1 x l um l +1 = C l j ; l = 1, 2, j = 1, . . . , n (9)
C 1 j = C 2 j ; j = 1, . . . , n (10)
z ij ∈ {0, 1}; j = 1, . . . , n, i = 1, . . . , n (11)
y l jk , x l jk ≥ 0; l = 1, 2, j = 1, . . . , n; k = 1, . . . , m l + 1 (12)
The objective function (1) minimizes the makespan. Constraints (2) and

(3) assign one job to exactly one position in the permutation. Constraint (4)

is the so called job-adjacency, machine linkage constraint [START_REF] Tseng | Two milp models for the n × m sdst flowshop sequencing problem[END_REF]. Constraint [START_REF] Tseng | An empirical analysis of integer programming formulations for the permutation flowshop[END_REF] ensures equal time-slices on adjacent machines for each pair of consecutive jobs in the sequence. A time-slice between the completion of job in position j on machine r and the start of job in position j + 1 on machine r + 1 is analysed.

On the left side is computed the idle time on machine r before starting job in position j + 1, its processing time, and the idle time of the job in case machine r + 1 is not free. On the right side is computed the idle time of job in position j before starting in machine r + 1, its processing time, and the idle time on machine r + 1 while waiting for job in position j + 1 to finish in machine r.

The computations on each side must occur in the same time-slice. Constraint

(5) computes, from the second machine on, the idle time in each machine of each semi-line while waiting for the first job. Constraint [START_REF] Naderi | Multi-objective nowait flowshop scheduling problems: models and algorithms[END_REF] ensures that the idle time on the synchronization machine waiting for the first job is equal to the larger total processing time on each semi-line. Constraint [START_REF] Ronconi | Mixed-integer programming models for flowshop scheduling problems minimizing the total earliness and tardiness[END_REF] ensures that there is no idle time for the job assigned to the first position in each machine of each semi-line, but the first job may wait to be processed on the synchronization machine, which is ensured by constraint [START_REF] Hnaien | Makespan minimization on a twomachine flowshop with an availability constraint on the first machine[END_REF]. Constraints (9) and (10) ensure the synchronization. Constraints [START_REF] Rad | New high performing heuristics for minimizing makespan in permutation flowshops[END_REF] and [START_REF] Widmer | A new heuristic method for the flow shop sequencing problem[END_REF] impose the variation domain of the variables.

The differences that have to be introduced in the model with respect to the classical permutation flowshop are due to the fact that we have synchronize each problem l at machines m l+1 (the synchronization operation duplicated to be the last machine in each problem l). To do this we have to compute in [START_REF] Mainieri | New heuristics for total tardiness minimization in a flexible flowshop[END_REF] the completion time C l j for each job j in each flowshop problem l, instead of just the makespan, and impose them to be equal in [START_REF] Nawaz | A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[END_REF].

This implies (i) that the m l+1 machine in problem l may have to wait for the first job in the sequence more than the sum of the processing times of such job on the previous machines (which is assumed to be equal in modeling the classical permutation flowshop). Thus, in [START_REF] Naderi | Multi-objective nowait flowshop scheduling problems: models and algorithms[END_REF] the waiting time on the m l+1 machine for the first job in each problem l must be greater or equal than the processing times in the previous machines of all problems, i.e., the two halves of a job must be completed before start the synchronization operation. And (ii) that the first job of the sequence may have to wait in problem l before starts its operation at the m l+1 machine (which is assumed to not occur in modeling the classical permutation flowshop). Indeed, we compute in [START_REF] Hnaien | Makespan minimization on a twomachine flowshop with an availability constraint on the first machine[END_REF] the waiting time of the fist job after being completed in the m l machine in problem l because machine m l+1 has to be synchronized.

Let us illustrate with the example in Figure 2. The synchronization operation is the third machine in each problem l. We have x 1 1,3 = 4, which is greater than the time spent by job yellow to be processed in the first two machines of problem l = 1, since the third machine of problem l = 1 has to wait job yellow to be processed in the first two machines of problem l = 2. We also have y 1 1,2 = 1, which is the time job yellow has to wait before start processing at the third machine due to synchronization.

Heuristics

In this section, we propose adaptations of the NEH heuristic by Nawaz et al. [START_REF] Nawaz | A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[END_REF] and also adaptations of the algorithm of Johnson [START_REF] Johnson | Optimal two-and three-stage production schedules with setup times included[END_REF] to obtain feasible solutions for the flowshop scheduling problem with parallel semi-lines and the synchronization operation.

Adaptations of the NEH heuristic

The NEH heuristic for the classical permutation flowshop starts by sorting the n jobs in decreasing order of the sums of processing times on all the m machines. Then, a partial scheduling consists of the first two jobs of this order in a sequence that minimizes the makespan. The other jobs, from the third, are inserted (one at a time) in the position of the partial scheduling leading to the smallest makespan. The relative positions between jobs already inserted in the partial scheduling do not change. We develop three adaptations of the NEH algorithm : NEH av -the average of the processing times p 1 ki and p 2 ki for each k = 1, . . . m l and for each job i, NEH hi -the highest processing time between p 1 ki and p 2 ki for each k = 1, . . . m l and for each job i, and NEH sep -where each semi-line is considered separately including the synchronization operation.

The NEH av and the NEH hi heuristics require the same number of machines in each semi-line, i.e, m = m 1 = m 2 . Let f designate the final synchronization machine. The general principle is to reduce the two semi-lines to a single line and apply the NEH heuristic. We do this by replacing at each stage the corresponding machines in each semi-line for a a single machine, as illustrated in where, for each job j, pkj is the processing time on machine k = 1, . . . , m and p f j is the processing time on the last machine, and apply the NEH heuristic to obtain a sequence seq av . Finally, we compute the makespan incurred by the sequence seq av in the whole system with the actual processing times p l kj for each semi-line l = 1, 2.

The NEH hi heuristic works in a similar manner. For each job j = 1, . . . , n, we compute pkj = max{p 1 kj , p 2 kj }, where k = 1, . . . , m is the k th -machine in each semi-line. Analogously to NEH av , we obtain by the NEH heuristic a sequence seq hi for an instance of the classical permutation flowshop with m + 1 machines where, for each job j, pkj is the processing time on machine k = 1, . . . , m and p f j is the processing time on the last machine. We then compute the makespan incurred by the sequence seq hi in the whole system with the actual processing times p l kj for each semi-line l = 1, 2. In the NEH sep heuristic we generate two instances of the classical permutation flowshop. NEH sep does not require the same number of machines in each semi-line. Each instance is composed of the machines of one of the semi-lines along with the synchronization operation, as illustrated in Figure 4. We apply, to obtain a sequence seq l sep , the NEH heuristic to each instance l = 1, 2 with m l + 1 machines where, for each job j, p l kj is the processing time on machine k = 1, . . . , m l and p f j is the processing time on the last machine. We adopt the sequence seq l sep , l = 1, 2, leading to the smallest makespan in the whole system with the two semi-lines and the synchronization operation.

Adaptations of Johnson's algorithm

Johnson's algorithm obtains a sequence that minimizes the makespan for the flowshop problem with two machines. The optimal sequence begins with the jobs having the processing time on the first machine smaller than the processing time on the second machine sorted in increasing order of processing times on the first machine, and ends with the remaining jobs in decreasing order of processing times on the second machine. We develop two adaptations of the Johnson's algorithm. The general principle is to consider the studied system as a flowshop with two machines by setting the synchronization operation as the second machine.

In the adaptation denoted by Joh av , for each job j = 1, . . . , n, the average processing time

m 1 k=1 p 1 kj + m 2 k=1 p 2 kj m1+m2
in the machines of the two semi-lines is used as the processing time on the first machine. The processing time of the synchronization operation is the processing time on the second machine. We then apply Johnson's algorithm, and compute, for the sequence obtained, the makespan in the whole system with the actual processing times p l kj for each semi-line l = 1, 2. The adaptation denoted by Joh hi works in a similar manner, but the largest processing time max l=1,2,k=1,...,m l {p l kj } among the machines of the semi-lines is used as the processing time of job j on the first machine.

Metaheuristics

We propose to use the previously described heuristics in the construction phase of a GRASP algorithm. GRASP was successfully applied to the permutation flowshop by Prabhaharan et al. [START_REF] Prabhaharan | Implementation of GRASP in flow shop scheduling[END_REF], and to a multi-objective variant by Arroyo and de Souza Pereira [START_REF] Arroyo | A grasp heuristic for the multiobjective permutation flowshop scheduling problem[END_REF]. Alternatively, we propose a simulated annealing algorithm, which was also successfully applied to the permutation flowshop by Hurka la and Hurka la [START_REF] Hurka La | Effective design of the simulated annealing algorithm for the flowshop problem with minimum makespan criterion[END_REF], and to a multi-objective variant by Jaros law et al. [START_REF] Law | Optimizing bicriteria flow shop scheduling problem by simulated annealing algorithm[END_REF].

GRASP

GRASP is a multistart metaheuristic, see, for instance, Resende and Ribeiro [START_REF] Resende | Greedy randomized adaptive search procedures: Advances, hybridizations, and applications[END_REF].

A GRASP iteration consists basically of two phases: a construction phase that builds a feasible solution using a randomized greedy heuristic, followed by a local search phase. We propose two versions of GRASP to try to find optimal or near-optimal solutions for the flowshop problem with parallel semi-lines and the synchronization operation. These variants differ in the heuristic employed in the construction phase. One version uses NEH sep and the other uses Joh av , since these were the procedures to obtain the best results in our computational experiments, c.f., Section 5.

Figure 5 presents the pseudo-code of the construction phase of GRASP NEH sep .

The procedure is written for a number L of semi-lines. The main loop in lines 1 to 10 treats, as NEH sep , each semi-line l along with the synchronization operation as an independent instance of the classical permutation flowshop. In line 2, for each job j, p j is the sum of processing times on all the m l + 1 machines.

The inner loop in lines 3 to 8 applies a randomized version of NEH sep . Instead of taking each time a job in decreasing order of p j , a job q is randomly chosen from the Restricted Candidate List RCL l . Given a percentage α of the total number n of jobs, at each time, RCL l contains the αn jobs with the largest p j not yet added to the sequence (if it remains lesser jobs than αn, then all remaining jobs are inserted at RCL l). The insertion of job q randomly selected from RCL l in the sequence under construction is done according to the NEH heuristic. In line 9, the makespan mk l incurred by seq l in the whole system with the two semi-lines and the synchronization operation is computed. At each GRASP iteration the construction phase returns, in line 11, the sequence seq l , l = 1, . . . , L, leading to the smallest makespan.

Procedure Construction Phase GRASP NEHsep

1
For l = 1 to L do 2 Let J be the set of n jobs, and compute p j = m l k=1 p l kj + p f j for each job j ∈ J.

3
For t = 1 to n do 4 Let RCL l ⊆ J be the set of the min{αn, n -t + 1} jobs with the largest p j .

5 Take at random a job q ∈ RCL l .

6

Insert q in the best of the t possible positions in the partial sequence seq

l 7 Let J = J -{q} 8
End-For 9 Compute be the makespan mk l incurred by seq l in the whole system.

10 End-For 11 Return the sequence seq l , l = 1, . . . , L, leading to the smallest mk l . job in increasing order of p j , a job q is randomly chosen from RCL u . Given a percentage α of n u , at each time, RCL u contains the αn u jobs with the smallest p j not yet added to the sequence (if it remains lesser jobs than αn u , then all remaining jobs in J u are inserted at RCL u). As in Johnson's algorithm, job q is 360 inserted in the last position of seq Jav . The second loop in lines 10 to 14 builds in an analogous manner the downward part of seq Jav , as each time a job q is randomly chosen from RCL d which contains the αn d jobs with the largest p j not yet added to the sequence. The makespan incurred by seq Jav in the whole system with the two semi-lines and the synchronization operation is computed for each job j ∈ J.

End-Procedure

2

Let Ju ⊆ J (resp. J d ⊆ J) be the set of jobs such that p j ≤ p f j (resp. p j > p f j). 4

For t = 1 to nu do 5 Let RCLu ⊆ Ju be the set of the min{αnu, nu -t + 1} jobs with the smallest p j .

6 Take at random a job q ∈ RCLu. 12 Take at random a job q ∈ RCL d .

13

Insert q in the (nu + t)-th position in the partial sequence seq Jav

14 Let J d = J d -{q}
15 End-For 16 Compute be the makespan incurred by seq Jav in the whole system. 17 Return the sequence seq Jav .

End-Procedure

Simulated annealing

We also use NEH sep and Joh av as initial solutions to a Simulated Annealing (SA) algorithm. Given a current solution s, SA proceeds generating at each iteration a neighbor solution s with a swap move at random. If s improves the makespan of s, then the current solution is updated. To prevent getting stuck in a local optima, the algorithm allows some worsening solutions. This is done by respecting a probability of allowance in relation to a temperature T . Let ∆ be the difference in the makespan between s and s. The worsening solution is accepted if a randomly chosen value between 0 and 1 is lower than e -∆/T .

The algorithm stopping criterion is determined by the slow cooling of the initial temperature. After a number of iterations with the same temperature without improvement, the temperature is updated to αT , α ∈ (0, 1). Note that GRASP and SA exploit the same neighborhood. At the end of SA, as an intensification strategy, we apply the local search based on swap moves to the solution returned by SA.

Computational experiments

The computational experiments were structured into three comparative settings: comparison of the heuristics proposed in Section 3 in terms of solution quality, tuning parameters of the metaheuristics proposed in Section 4, and evaluation of the effectiveness of the best metaheuristic configurations with respect to optimal or lower bounds obtained with the MIP model proposed in Section 2.

For such purpose, we generated two set of instances according to the guidelines introduced by Taillard The computational experiments were run on a Intel Core i3, 3.1GHz with 4GB of RAM. The results of the MIP model were obtained with CPLEX 12.6.1, and the proposed algorithms were implemented in C++. We were able to obtain optimal solutions for 186 instances.

In the first two comparative settings, i.e., comparisons of the heuristics proposed in Section 3 and tuning parameters of the metaheuristics proposed in Section 4, the quality of the solution obtained by the proposed algorithms is measured by the percentage gap = ub-opt opt * 100, where ub is the solution obtained by the proposed algorithm and opt is the optimal or the best solution obtained in these settings (in the case of the remaining open instances).

Figure 7 shows, for each heuristic proposed in Section 3, the average percentage gap, the range interval of the average gaps, and the fit to a normal distribution. Figure 7a shows results for the instances with the same number number of machines in each semi-line, and Figure 7b results for the instances with different number of machines.

Considering the results shown in Figure 7a, we can see that the idea of reducing the problem to a classical permutation flowshop is not effective, since NEH av and NEH hi present the higher gaps. The performance of the adaptations of Johnson's algorithm vary considerably, since Joh av and Joh hi present the higher standard deviations. The heuristic NEH sep obtained the best average results on the both set of instances. We remark that for the instances for which the optimal solution were obtained, the optimal values are higher that the optimal values considering each semi-line along with the synchronization machine as a classical permutation flowshop, i.e., there is not a semi-line that dominates the other one. The average gaps observed for NEH sep , Joh av , and Joh hi are higher for the set with different number of machines. As NEH sep and Joh av were the heuristics to present the best results, they were used in our GRASP and SA algorithms, c.f., Section 4.

Figure 8 shows results for GRASP with different values of the parameter α which controls the cardinality of the RCL. The number of GRASP iterations without improvement, i.e., the stopping criteria, was set to 100. Increasing the value of α leads to a RCL with a larger cardinality. We consider for α the values 20%, 30%, and 50%. We were able to drastically reduce solution costs embedding NEH sep and Joh av into GRASP. GRASP NEH sep with α = 50% presents average gaps of less than 0.5% to the optimal or to the best solution obtained in this setting.

Figure 9 shows results for SA with different values of the parameter α, the cooling factor, which controls the reduction of the temperature. The initial and the final temperatures were set to 6000 and 10 -4 , respectively. The number of SA iterations with a constant temperature without improvement was set to 90. We consider for α the values 0.20, 0.50, and 0.95. Although important improvements can be observed, SA was not able to improve average gaps in the same manner as GRASP. The best results with SA presents average gaps higher than 2%.

We now report in a final comparative setting detailed results to assess the effectiveness of GRASP. For such purpose we report optimality gaps computed with respect to optimal or best lower bounds obtained with the MIP model proposed in Section 2. Since GRASP NEH sep with α = 50% obtained the best results in the previous experiments, we investigate greater values of α = 75%, shown the number of instances for each combination the optimal solution was found, the average optimality gap in percentage, the average computational time in seconds, and the average total number of iterations.

Note that not only the number of jobs, but also the number of machines play an important role in how difficult is to solve the problem to optimality with the MIP model. For example, instances with 50 jobs and 3 machines in each semi- 5% for all instances but E50 × 11 -6.

Conclusion

This work focused on the development of optimization methods to solve a variant of the permutation flowshop scheduling problem with parallel semi-lines and a final synchronization operation. This study emerged from a practical situation in a welding process of an industry that manufactures electro-electronic system products, and may be a common problem in other industrial sectors as well. Our purpose was to design efficient methods to solve the problem, which, to the best of our knowledge, has not yet been treated.

In a first approach, a mixed-integer linear programming model, inspired from the classical permutation flowshop, was introduced. This model required adaptations regarding to the treatment of the semi-lines separately and a particular attention in the finalization of the semi-lines since this is the point of junction of the two halves of the jobs that are produced in the two semi-lines. The model was efficient for small instances, but for larger instances, it was not able to find optimal solutions in moderate computational times. We also proposed constructive heuristics and methaheuristics in an attempt to find optimal or near-optimal solutions with reasonable computational times. In particular, an adaptation of the NEH heuristic embedded in a GRASP algorithm lead to an effective and robust algorithm to tackle the problem, obtaining average optimality gaps of less than 1% in low computational times.

Future extension of our work could focus on further exploration of problemspecific characteristics and developing more effective methods and local search procedures for this problem. Moreover, due to the effectiveness of the metaheuristic methods, it could be interesting to analyze their performances by using other objective criteria such as the total flowtime or total tardiness.

Figure 1 :

 1 Figure 1: System under study.

Figure 2 :

 2 Figure 2: Gantt chart of a small example.

 machine k of the problem l before the job starts in the j th position of the permutation; y l jk idle time of job in the j th position of the permutation after finishing the processing on machine k of problem l, while waiting for the machine k + 1 of problem l to become available; C l j completion time in problem l of the job in the j th position of the permutation.

Figure 3 .

 3 Figure 3. In the NEH av heuristic, for each job j = 1, . . . , n, we compute pkj = (p 1 kj + p 2 kj)/2, where k = 1, . . . , m is the k th -machine in each semi-line. At this point we have an instance of the classical permutation flowshop with m + 1 machines

Figure 3 :

 3 Figure 3: Reducing the semi-lines to a single line, m = 3.

Figure 4 :

 4 Figure 4: Generating two instances of the classical permutation flowshop.

Figure 5 :

 5 Figure 5: Pseudo-code of the construction phase of GRASP NEHsep.

Figure 6

 6 Figure6presents the pseudo-code of the construction phase of GRASP Joh av .The procedure uses two Restricted Candidate Lists: RCL u for the upward part, and RCL d for the downward part of the sequence seq Jav . In line 1, for each job j, p j is the average processing time on all the machines of the L semi-lines (the processing time of job j reducing the semi-lines to the first machine, the synchronization operation being the second machine). As in Johnson's algorithm, in line 2 the jobs are partitioned in two subsets J u and J d by comparing p j to p f j . Note that n u and n d are set in line 3, and do not change along the procedure. The first loop in lines 4 to 9 builds with a randomized version of

365 in line 16 ,

 16 and seq Jav is returned by the construction phase at each GRASP iteration in line 17.Procedure Construction Phase GRASP Johav1Let J be the set of n jobs, and compute p j =

3

 Set nu = |Ju| and n d = |J d |.

7

 Insert q in the t-th position in the partial sequence seq Jav 8 Let Ju = Ju -{q} 9 End-For 10 For t = 1 to n d do 11 Let RCL d ⊆ J d be the set of the min{αn d , n d -t + 1} jobs with the largest p j .

Figure 6 :

 6 Figure 6: Pseudo-code of the construction phase of GRASP Johav.

 [START_REF] Taillard | Benchmarks for basic scheduling problems[END_REF]. In the first set of instances the semi-lines have the same number of machines each, while in the second set they have different number of machines. A total of 230 instances were generated with 10, 20, and 50 jobs, and 3, 5, 7, and 11 machines, including the final synchronization machine. For example, an instance with 3 machines belonging to the first set has 2 machines in each semi-line, and the final synchronization machine, whereas an instance with 3 and 5 machines belonging to second the set has 2 machines in one semi-line, 4 machines in the other semi-line, and the final synchronization machine. The set with the same number of machines contains 120 instances: 10 instances for each combination number of jobs -number of machines. The set with different number of machines contains 110 instances: 50 instances with 10 jobs, 50 instances with 20 jobs, and 10 instances with 50 jobs.

(a)

 a Same number of machines. (b) Different number of machines.

Figure 7 :

 7 Figure 7: Comparison of the proposed heuristics.

(a)

 a Same number of machines. (b) Different number of machines.

Figure 8 :

 8 Figure 8: GRASP performances regarding different values of the Restricted Candidate List (RCL) parameter.

 line were solved 10 times faster in average than instances with 20 jobs and 5 machines in each semi-line. Instances with a large number of jobs and machines were out of reach for the MIP model. Results show that GRASP NEH sep is an effective and robust algorithm to tackle the problem. The overall average optimality gaps are smaller than 1% for all three values of α, and only for -number of machines average optimality gaps are in the range between 1% and 5%. In particular GRASP NEH sep with α = 100%, the random multistart version, obtained the optimal solution for 186 out of 230 instances and for only 2 combinations the average optimality gap exceeded 1% (E50 × 11 with 2.43% and D20 × 03 × 11 with 1.14%). Moreover, these results were obtained with low computational times, even for instances out of reach for the MIP model. Tables 4 to 9 present detailed results for the combinations which optimal values were not obtained for most instances, namely: E20 × 07, E20 × 11, E50 × 07, E50 × 11, D20 × 03 × 11, and D20 × 05 × 11, in this order. In these tables, the first column identifies the instance, and the second column presents the best lower bound obtained when running the MIP model. Then, for each value of α, it is shown for each instance the upper bound obtained, the optimality gap in percentage, the computational time in seconds, and the total number of iterations. The detailed results on the harder instances confirm that GRASP NEH sep is an effective and robust algorithm to tackle the problem, specially GRASP NEH sep with α = 100% that obtained optimality gaps below

Table 2 :Table 3 : 4 :GRASP 5 :GRASP 6 :GRASP 7 : 8 : 9 :

 23456789 Average results for GRASP NEHsep with α = 50%, α = 75% and α = 100% -same number of machines. Average results for GRASP NEHsep with α = 50%, α = 75% and α = 100% -different number of machines. Detailed results for GRASP with α = 50%, α = 75%, and α = 100% on instances E20×07. GRASP NEHsep α = 50% GRASP NEHsep α = 75% Detailed results for GRASP with α = 50%, α = 75%, and α = 100% on instances E20×11. GRASP NEHsep α = 50% GRASP NEHsep α = 75% Detailed results for GRASP with α = 50%, α = 75%, and α = 100% on instances E50×07. GRASP NEHsep α = 50% GRASP NEHsep α = 75% Detailed results for GRASP with α = 50%, α = 75%, and α = 100% on instances E50×11. Detailed results for GRASP with α = 50%, α = 75%, and α = 100% on instances D20 × 03 × 11. Detailed results for GRASP with α = 50%, α = 75%, and α = 100% on instances D20 × 05 × 11.

Table

Table 1 :

 1 An example with the same number of machines in each semi-line.

	1, i.e., an instance with 1 machine in semi-line

(a) Same number of machines. (b) Different number of machines.Figure 9: SA performances regarding different the values of the cooling factor parameter.

We thank the anonymous reviewer for his/her suggestion to investigate greater values of α.

Acknowledgments: This research was partially supported by Brazilian funding agencies CAPES and CNPq.