Determination of gold nanoparticle shape from absorption spectroscopy and ellipsometry
Yann Battie, Irene Izquierdo-Lorenzo, Amandine Resano-Garcia, Aotmane En Naciri, Suzanna Akil, Pierre-Michel Adam, Safi Jradi

To cite this version:

HAL Id: hal-02301767
https://utt.hal.science/hal-02301767
Submitted on 28 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Determination of gold nanoparticle shape from absorption spectroscopy and ellipsometry
Yann Battie, Irene Izquierdo-Lorenzo, Amandine Resano-Garcia, Aotmane En Naciri, Suzanna Akil, Pierre-Michel Adam, Safi Jradi

To cite this version:

HAL Id: hal-02301767
https://hal-utt.archives-ouvertes.fr/hal-02301767
Submitted on 28 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Full Length Article

Determination of gold nanoparticle shape from absorption spectroscopy and ellipsometry

Yann Battiea,*, Irene Izquierdo-Lorenzob, Amandine Resano-Garciaa, Aotmane En Naciria, Suzanna Akilb, Pierre Michel Adamb, Safi Jradb

a LCP-A2MC, Institut Jean Barriol, Université de Lorraine, 1 Bd Arago, 57070 Metz, France
b LNIO (CNRS UMR 6279), Université de Technologie de Troyes, 12 rue Marie Curie, 10010 Troyes, France

\textbf{A R T I C L E I N F O}

Article history:
Received 28 July 2016
Received in revised form 21 November 2016
Accepted 19 December 2016
Available online xxx

Keywords:
Ellipsometry
Absorption spectroscopy
Nanoparticle shape distribution
Effective medium theory

\textbf{A B S T R A C T}

A new methodology is developed to determine the shape distribution of gold nanoparticles (NPs) from optical spectroscopic measurements. Indeed, the morphology of Au colloids is deduced by fitting their absorption spectra with an effective medium theory which takes into account the nanoparticle shape distribution. The same procedure is applied to ellipsometric measurements recorded on photoresist films which contain Au NPs. Three spaces (L2, r2, P2) are introduced to interpret the NPs shape distribution. In the P2 space, the sphericity, the prolacity and the oblacity estimators are proposed to quantify the shape of NPs. The r2 space enables the determination of the NP aspect ratio distribution. The distributions determined from optical spectroscopy were found to be in very good agreement with the shape distributions obtained by transmission electron microscopy. We found that fitting absorption or ellipsometric spectra with an adequate effective medium theory, provides a robust tool for measuring the shape and concentration of metallic NPs.

1. Introduction

Metallic nanoparticles (NPs) such as silver or gold NPs exhibit strong plasmon resonances whose characteristics depend on their size, shape and environment \cite{1}. These unique optical properties give them great potentials as building blocks of photovoltaic devices and sensors \cite{2-6}. These applications have motivated a sustained effort towards the control of NP size and shape distributions. Transmission electron microscopy (TEM) is usually used to estimate the NP radius and shape distribution. However, since TEM is a local characterization tool, the statistical analysis of NP distributions from TEM is too time consuming. In addition, TEM only gives a two dimensional projection of NPs. This could lead to a poor estimation of NP shape. Tomography mode is currently under development and is not implemented on conventional TEM. Moreover, the 3D observation of NPs in tomography mode is too time consuming to record their distribution over a huge number of NPs. Thus, the development of non-local alternative characterization tools is required to determine the NP shape distribution. Grazing incidence small angle X-ray scattering (GISAXS) was previously used to characterized the morphology of supported NPs \cite{7-9}. The shape distribution can be estimated by comparing the measured GISAXS pattern with the simulated one. However, this technique requires some facilities such as synchrotron beam line. In addition, this technique cannot be used to characterize NPs in bulk solution or embedded in thick film.

Recent advances in optical modeling open new ways for quantitative optical characterization of metallic NPs. Garellie et al. \cite{10} have introduced the NP size distribution into the Mie theory. However, Mie theory fails to describe the optical properties of nonspherical NPs \cite{11}. As shown by Eustis et al. \cite{12}, the aspect ratio distribution of gold nanorods can be evaluated by fitting their longitudinal plasmon band by the Gans theory. Slyusarenko et al. \cite{13} have validated this approach by comparing the NP volume fraction obtained from absorption spectroscopy to the one estimated by small angle X-Ray scattering measurement. However, Eustis et al. \cite{12} neglect the influence of the aspect ratio distribution on the interband transitions and on the transversal plasmon band of NPs. In addition, this approach is limited to prolate NPs. Spectroscopic ellipsometry has been recently exploited to investigate the growth mechanism of metallic NPs \cite{14-17}. As shown by Oates et al. \cite{15,16}, the NP size, orientation and organization can be characterized by spectroscopic ellipsometry. The analysis of ellipsometric data requires the modeling of the optical properties of nanomate-
The slope <β> is given by [26]:

$$\langle \beta \rangle = \frac{\varepsilon_m}{3} \int \int P(L_1, L_2) \sum_{i=1}^{3} \frac{1}{\varepsilon_m + L_i (1 - \varepsilon_m)} dL_1 dL_2.$$ (5)

L_1, L_2, L_3 are the depolarization parameters of ellipsoidal NPs along their three principal axes. These parameters which depend on the NP shape, vary in the 0–1 range and must respect the following sum rule:

$$1 = L_1 + L_2 + L_3$$ (6)

Note that this equation fails for NPs located on an interface. In this case, dipole images must be taken into account. Other theories such as the Yamaguchi theory [27] or the Bedeaux and Viegler theory [28,29] must be considered to take into account dipole image effects. The distribution of the depolarization parameters $(P(L_1, L_2))$ is introduced into Eq. (5) to take into account the distribution of NP shape. The effective dielectric function of a medium composed of ellipsoidal NPs embedded in a dielectric matrix can be calculated by combining Eqs. (1)–(4):

$$\varepsilon_{eff} = \frac{(1 - f) \varepsilon_m + f \varepsilon_{np} (\beta)}{(1 - f) + f (\beta)}.$$ (7)

This effective dielectric function respects the Wiener limits and Hashin-Shtrikman bounds. In the following, we assume that the distribution of depolarization parameters is described by a sum of Gaussian distributions [24,26]:

$$P(L_1, L_2) = C \sum_{k=1}^{N} C_k e^{-0.5 \left(\frac{(L_1 - L_{1,k})^2}{\sigma_{L_1}^2} + \frac{(L_2 - L_{2,k})^2}{\sigma_{L_2}^2} + \frac{(\beta - \beta_{k})^2}{\sigma_{\beta}^2} \right)}.$$ (8)

Note that other distributions can be used. C is a constant used to normalize the distribution. $L_{1,k}$ and $L_{2,k}$ are the standard deviation and the mean value of the k^{th} Gaussian term, respectively. $L_{1,k}, L_{2,k}$ and $L_{3,k}$ are linked together by Eq. (6). The relative volume fraction f_k attributed to the k^{th} Gaussian term is defined by:

$$f_k = f C_{k}.$$ (9)

2.2 L^2, P^2 and r^2 spaces

By considering the Bohren convention [21] $(L_1 \leq L_2 \leq L_3)$, we can define a two dimensional depolarization space (L^2) in which each NP shape is represented by an unique point $M(L_1, L_2)$ (Fig. 1a). In this space, the normalized distribution of NP depolarization factors $P(L_1, L_2)$ is correlated to the NPs shape distribution. As an example, the locus of spherical, oblate and prolate NPs are $L_1 = L_2 = 1/3, L_1 = L_2$ and $L_2 = 0.5 - 0.5 L_1$, respectively. However, the quantitative description of nanoparticle shape distribution and the numerical calculation of the integral of Eq. (5) remain difficult in this physical space. As shown in Fig. 1a, each point M of the L^2 space is included in a ABC triangle. Thus, the vector AM must respect the following relationship:

$$AM = (1 - P_0) AB + (1 - P_0) (1 - P_0) BC.$$ (10)

Where $0 \leq P_0 \leq 1$ and $0 \leq P_0 \leq 1$. Each point $M(L_1, L_2)$ can be represented by a new set of coordinates (P_0, P_2) in a two dimensional orthonormal space (P^2) (Fig. 1b). The (L_1, L_2) coordinates are related to the (P_1, P_2) coordinates thanks to the following transformations:

$$L_1 = \frac{(1 - P_0) (1 - P_0)}{3}.$$ (11)

$$L_2 = \frac{(1 - P_0) (1 - P_0)}{2} - \frac{(1 - P_0) (1 - P_0)}{6}.$$ (12)

The locus of oblate, prolate or spherical NPs in P^2 are $(0, P_0)$, $(P_0, 0)$ and $(0, 0)$, respectively. In other words, P_0 and P_2 traduce...
the oblate and prolate characters of NPs, respectively. Indeed, the closer $P_o(P_p)$ value is to 0, the more nanoparticles can be considered as oblate (prolate).

To give a quantitative analysis of the NPs shape distribution in the P^2 space, we introduce three estimators: the oblacity (\bar{P}_o), the prolaticy (\bar{P}_p) and the sphericity (\bar{P}_s) of NPs. (\bar{P}_o, \bar{P}_p) are calculated by applying the coordinates transformation (11)–(12) to the mean value (L_1, L_2) of the depolarization parameter distribution. \bar{P}_o and \bar{P}_p quantifies the deviation of NPs to the oblate and prolate shapes respectively. Both estimators vary in the 0–1 range. The sphericity (\bar{P}_s) is the euclidian distance in the P^2 space between the locus of spherical NPs and the mean value of the distribution of NP shape:

$$\bar{P}_s = \sqrt{\bar{P}_o^2 + \bar{P}_p^2}. \quad (13)$$

This estimator which varies in the 0–$\sqrt{2}$ range, enables an estimation of the deviation of NPs shape distribution from the spherical distribution. Indeed, the closer its value is to 0, the more the distribution can be considered as that of spherical distribution. Eq. (13) supports that spherical NPs have simultaneously a prolate and an oblate shape. Thus, the introduction of the P^2 space makes easier the quantitative analysis of the NP shape distribution.

By assuming that the effective medium is composed of ellipsoidal NPs, the distribution of depolarization factor $P(r_1, r_2)$ in the L^2 space can be converted into a distribution $P(r_2, r_3)$ in aspect ratios of ellipsoidal NPs in a new 2-dimensional space r^2 (Fig. 1c) by applying the following coordinate transformation [21]:

$$L_i = \frac{r_2 r_3}{2} \int_0^{+\infty} \frac{dq}{(q + r_i^2)^{3/2}} \left(q + r_i^2 \right)^{3/2} \left(q + r_i^2 \right). \quad (14)$$

where $r_i = a_i/a_1$, $i = 1–3$, are the aspect ratios of an ellipsoidal NP. a_1, a_2, a_3 are the length of principal axes of each ellipsoidal NP. To obtain a bijective space, the lengths of principal axes are sorted in the following order: $a_3 \leq a_2 \leq a_1$.

3. Materials and methods

In this paper, two colloidal solutions of gold NPs (S1, S2) and two photoresists films (F1, F2) which contain gold NPs are considered.

The colloidal solution S1 of Au dispersed in water was purchased from Sigma Aldrich and was used as received. S2 was synthesized according to the seed-mediated growth method [30]. Briefly, a seed solution was prepared by mixing 5 ml of HAuCl₄ (5 \times 10⁻⁴ M) dispersed in water with 5 ml of CTAB (0.2 M) and 0.6 ml of ice-cold NaBH₄ (0.01 M) solutions. Then, 12 μl of the seed solution was mixed to 5 ml of a CTAB (0.2 M), 0.3 ml of AgNO₃ (4 \times 10⁻³ M), 5 ml of HAuCl₄ (0.001 M) and 70 μl of ascorbic acid (0.08 M). F1 and F2 films are elaborated by the following procedure [31]: 5%/wt and 60%/wt of HAuCl₄ 3H₂O were dispersed in propylene-glycol monomethyl ether acetate (PGMEA) for F1 and F2, respectively. These solutions were added to a commercial photoresists AZ9260. The proportion of PGMEA in AZ9260 is set at 70:30. The mixtures were homogenized in an ultrasonic bath for one minute at room temperature. The films are deposited on a cleaned silicon substrate by spin coating at 5000 rpm for 60 s. The films are baked on hot plate 8 min at 80 °C, respectively. The films were baked at 120 °C to evaporate all traces of solvent and activate the growth of NPs. The F1 and F2 film thicknesses are 258 ± 1 nm and 105 ± 1 nm, respectively. The nominal volume fractions of NPs calculated from the amount of all reactants are 0.6% ± 0.1% and 12% ± 2% for F1 and F2, respectively.

Ellipsometric measurements were recorded in reflection mode in the 0.59–4.43 eV spectral range with a phase modulated ellipsometer (UVISEL, Horiba). The light beam diameter is approximately equal to 5 mm. The ellipsometric parameters k, l were measured at three angles of incidence: 50°, 60° and 70°. These parameters depend on the ellipsometric angles Ψ and Δ:

$$I_s = \sin 2\Psi \sin \Delta \quad (15)$$

$$I_c = \sin 2\Psi \cos \Delta \quad (16)$$

Absorption spectroscopy was performed on S1 and S2 solution by using the same setup in transmission configuration. The solution is placed inside a quartz cuvette of 1 mm light path.

TEM images are recorded with a Tecnai CM200 microscope operating at 200 kV. TEM grids of S1 and S2 were prepared by evaporating a drop of colloidal solution on a copper grid. To prepare TEM grids of F1 and F2, the films are stripped off the substrate by scratching the samples with a razor blade. The film fragments are then deposited on a copper TEM grid.

4. Results and discussion

Fig. 2 shows the TEM images of S1, S2, F1 and F2 Au NPs. The length distributions of the apparent minor (d) and major axes (D) of NPs are reported in Fig. 3. S1 and F1 contain spherical Au nanoparticles whose mean diameters are 31 ± 3.6 nm and 6–7 ± 2 nm, respectively. S2 is composed of a mixture of spherical Au NPs and Au nanorods with a major axis length smaller than 45 nm. F2 is composed of NPs polydispersed in shape. Their mean diameter is estimated at 12–13 ± 6.8 nm. In agreement with the quasi-static approximation, the NP size deduced from TEM measurements is much smaller than the wavelength. In other words, scattering, multipolar and dynamic effects are negligible for this NP size [25].
Fig. 2. TEM images of (a) S1, (b) S2, (c) F1 and (d) F2.

Fig. 3. Distributions of the lengths of the minor (d) and major (D) axes of (a) S1, (b) S2, (c) F1 and (d) F2 NPs.
The NPs aspect ratio distributions measured from TEM are reported in Fig. 4. The aspect ratio of S1 NPs, defined as the ratio between the lower and the higher NP radius, is in the 0.8–1 range, confirming that S1 is mainly composed of spherical NPs. On the other hand, 86% of F1 NPs have an aspect ratio in the 0.95–1 range. In other words, F1 NPs are nearly monodispersed in shape. The aspect ratio distribution of S2 measured over 1500 NPs follows a bimodal distribution centered at 1 and 0.35 associated to nearly spherical NPs and nanorods, respectively. F2 is composed of randomly oriented nanoparticles which have a broad shape distribution. The amount of spherical NPs is estimated at 30% in F2 film. Indeed, most of NPs are elongated. These NPs come from the coalescence of spherical NPs.

The absorption spectra of S1 and S2 are shown in Fig. 5. The absorption due to the interband transitions of Au NPs is clearly observed above 2.5 eV. The absorption spectra of S1 exhibits a strong plasmon resonance located at 2.35 eV. The S2 spectra exhibits two overlapped broad bands centered at 1.677 eV and 2.34 eV. The band located at lower energy has a smaller amplitude than the band at higher energy. By considering the Fröhlich condition [1], which corresponds to the pole of Eq. (5), the bands at 2.35–2.36 eV can be assimilated to the optical signature of nearly spherical NPs while the band centered at 1.677 eV corresponds to the longitudinal plasmon resonance of Au nanorods. To analyze the NP shape distribution, the measured absorption spectra were fitted by using the SDEMT model. The dielectric function of NPs (ε_{np}) is assimilated to the dielectric function of bulk Au [32]. The dielectric function of the matrix (ε_m) is replaced by the dielectric function of water [32]. The Levenberg-Marquardt algorithm [33] is used to solve the inverse problem. By considering TEM measurements (Figs. 2 and 4), we assume that the distribution of depolarization parameters is described by a single Gaussian distribution for S1, and a sum of two Gaussian distributions for S2. Thus, 6 (f_1, L_1, L_2, σ_1, σ_2, σ_3) and 12 (f_1, L_1, L_2, σ_1, σ_2, σ_3, f_2, L_{12}, L_{22}, σ_{12}, σ_{22}, σ_{32}) free parameters are simultaneously fitted for S1 and S2, respectively. The correlation coefficients between free parameters are in the $-0.6; 0.6$ range, confirming that all parameters are not correlated. This behavior comes from the high sensitivity of each parameter to a specific characteristic of the spectra. Indeed, as we have demonstrated previously [26], the shape distribution has a negligible influence on the effective absorption coefficient in the UV spectral range. In this spectral range, a linear relationship can

be obtained between the volume fraction and the effective absorption coefficient [26]. In addition, the position of the plasmon band mainly depends on the mean value of depolarization factor while the width of the plasmon bands is mainly defined by the standard deviation of the distribution [26]. We also check that the initial input values have a negligible effect on the final results. As shown,
The aspect ratio distribution in the r^2 space (Fig. 6f) is close to the distribution of nearly spherical NPs and nanorods assimilated to prolate NPs. Indeed, S_2 contains a mixture of two distributions (DS21 and DS22) (Fig. 6d–f). The volume fraction of S1 NPs is estimated at 2.1\times10$^{-4}$% confirming that the NPs are sufficiently diluted to neglect their mutual interaction.

The distributions of NP shape in the L^2, P^2 and r^2 spaces deduced from the absorption spectra analysis are reported in Fig. 6. In agreement with TEM (Figs. 2 and 4), the S1 distribution is centered on the locus of spherical NPs (Fig. 6a–c). Indeed, as summarized in Table 1, the sphericity parameter is close to zero. In addition, the distribution of aspect ratio in the r^2 space (Fig. 6c) matches the distribution obtained from TEM (Fig. 4a). Indeed, the aspect ratio of NP vary from 0 to 1 because a large number of S1 NPs are facetted and are not perfectly spherical. On the contrary, S2 distribution is the combination of two distributions (DS21 and DS22) (Fig. 6d–f). The volume fractions of NP associated to DS21 and DS22 are 2.5\times10$^{-4}$% and 5.4\times10$^{-5}$%, respectively. To make easier the interpretation, the oblateness, prolacity and sphericity parameters are calculated for each distribution (Table 1). The sphericity parameter of DS21 is estimated at 0.08 while the prolacity and the sphericity parameters of DS22 are 0 and 0.77, respectively. Indeed, S_2 contains a mixture of nearly spherical NPs and nanorods assimilated to prolate NPs. The aspect ratio distribution in the r^2 space (Fig. 6f) is close to the one measured from TEM (Fig. 4b). However, only one aspect ratio per NPs can be measured from TEM because TEM provides a two dimensional projection of NPs. In addition, the NPs volume fraction cannot be determined by TEM. The volume of the colloidal solution probed by the light beam is 20 mm3. By considering the volume fraction and the mean volume of NPs, we conclude that the distribution of NP shape is recorded over 1010–1012 NPs.

The same procedure can be used to determine the NP shape distribution from ellipsometric measurements. Contrary to absorption spectroscopy, ellipsometry is sensitive to the real part and the imaginary part of dielectric function of materials. In addition, ellipsometric measurements in reflection mode enables the characterization of thin films deposited on opaque substrates. The ellipsometric spectra of F1 and F2 are shown in Fig. 7. To extract optical properties of nanocomposite layers from ellipsometric data, an optical model must be introduced. This model consists of a silicon substrate covered by a photoresist film which contains Au NPs. The optical properties of these films are described by an effective dielectric function calculated from SDEMT (7).

Table 1

<table>
<thead>
<tr>
<th></th>
<th>π_p</th>
<th>π_s</th>
<th>π_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S2 (DS21)</td>
<td>0.08</td>
<td>0.77</td>
<td>0.77</td>
</tr>
<tr>
<td>F1</td>
<td>0.006</td>
<td>0.004</td>
<td>0.007</td>
</tr>
<tr>
<td>F2</td>
<td>0.07</td>
<td>0.3</td>
<td>0.31</td>
</tr>
</tbody>
</table>

The distribution is centered on the assumption that the NPs are sufficiently diluted to neglect their mutual interaction. The optical properties of these NPs are deduced from the analysis of the distribution of aspect ratio in the r^2 space (Fig. 6c) matches the distribution obtained from TEM (Fig. 4a). Indeed, the aspect ratio of NP vary from 0 to 1 because a large number of S1 NPs are facetted and are not perfectly spherical. On the contrary, S2 distribution is the combination of two distributions (DS21 and DS22) (Fig. 6d–f). The volume fractions of NP associated to DS21 and DS22 are 2.5\times10$^{-4}$% and 5.4\times10$^{-5}$%, respectively. To make easier the interpretation, the oblateness, prolacity and sphericity parameters are calculated for each distribution (Table 1). The sphericity parameter of DS21 is estimated at 0.08 while the prolacity and the sphericity parameters of DS22 are 0 and 0.77, respectively. Indeed, S_2 contains a mixture of nearly spherical NPs and nanorods assimilated to prolate NPs. The aspect ratio distribution in the r^2 space (Fig. 6f) is close to the one measured from TEM (Fig. 4b). However, only one aspect ratio per NPs can be measured from TEM because TEM provides a two dimensional projection of NPs. In addition, the NPs volume fraction cannot be determined by TEM. The volume of the colloidal solution probed by the light beam is 20 mm3. By considering the volume fraction and the mean volume of NPs, we conclude that the distribution of NP shape is recorded over 1010–1012 NPs.

The optical properties of these films described by an effective dielectric function calculated from SDEMT (7). The dielectric function of the matrix ε_m is set to the measured one on a photoresist film without Au precursor. In a classical approach, an intrinsic confinement effect occurs when the mean free path of conduction electrons is limited by the NP size. As we have shown previously [25], this effect becomes non-negligible for NP size smaller than 5 nm. In other words, by considering the NPs size deduced from TEM (Fig. 2c and d), the intrinsic confinement must be taken into account for F1 and F2. By assuming that the intrinsic confinement only affects free electrons, the dielectric function of Au NPs can be calculated from [1]:

$$\varepsilon_{np}(l) = \varepsilon_{bulk} - \frac{a_0^2}{\omega^2 + i\Gamma_0} + \frac{a_0^2}{\omega^2 + i(NUL + A + f)}$$

where ω is the photon energy and A a constant. ε_{bulk} is the bulk dielectric function of Au [32], $\omega_p = 8.64$ eV, $\Gamma_0 = 0.097$ eV and $\gamma_f = 1.4\times10^5$ m/s are the bulk plasma energy, the bulk electron damping and the Fermi velocity of free electrons, respectively [25]. l is the mean value of NP size. The value of the constant A depends on the NP shape [31], the scattering scheme [1,34], and the chemical environment of NPs [35–37]. As reported previously, confinement effect induces a broadening of the plasmon band and a decrease of its amplitude [1,25]. In addition, this effect induces a decrease of the absorption close to the interband transition threshold. The Abeles formalism [38] is used to calculate the ellipsometric parameters (l, l_1, l_2, σ_1, σ_2, σ_3, A/l, l, and the film thickness. Since A and l are strongly cor-

Fig. 8. Distributions of (a)–(c) F1 and (d)–(f) F2 NP shape in the (a) (d) L^2, (b) (e) P^2 and (c) (f) r^2 spaces.
related, they cannot be fitted independently. Indeed, only the ratio A/l can be determined from ellipsometric measurements [39]. The parameters f, L_1, L_2, α_1, σ_2 and σ_3 are fitted simultaneously. More details on the fitting procedure and the A/l values obtained from ellipsometry for F1 and F2 are given in reference [39].

As shown in Fig. 7, a good agreement is obtained between the experimental ellipsometric spectra and the calculated ones. The root mean square error between the simulated and the experimental data is smaller than 0.06 for both films. Moreover, the correlation matrix (not shown) suggests that all free parameters are independent. The volume fractions of NPs are estimated at 0.7% ± 0.1% for F1 and F2, respectively. These values are close to the nominal ones, and are small enough to neglect the NP interaction, confirming the correctness of our model. By considering the film thickness and the volume fraction of NPs, the ellipsometric beam probes approximately 10^{11} NPs.

The NP shape distributions in the L^2, p^2 and r^2 spaces are reported in Fig. 8. In accordance with TEM (Fig. 4c and d), F1 has a narrow NP shape distribution centered on the locus of spherical NPs. Indeed, its sphericity parameter is 0.007. On the contrary, the NP shape distribution of F2 is more complex and broader than the NP shape distribution of F1. The low proclivity value supports that the majority of NPs in F2 are elongated along one direction. TEM measurements (Fig. 4d) reveal that the apparent aspect ratio of nanoparticles is in the 0.4–1 range. However, 30% of NPs have an aspect ratio close to 1 (Fig. 4d). TEM gives a two-dimensional projection of NPs so, only one aspect ratio per NP can be measured by TEM. As a consequence, the aspect ratio estimated by TEM can be overestimated because non-spherical elongated nanoparticles could appear as closely spherical NPs, depending on their orientation. This supports that optical spectroscopy can be used to supplement TEM for the characterization of NP shape distribution.

5. Conclusion

In summary, we have developed an effective medium theory (SDEMT) to calculate the complex dielectric function of randomly oriented ellipsoidal NPs distributed in shape. Three spaces L^2, p^2 and r^2 were introduced with the sphericity, proclivity and obliquity estimators to analyze the NP shape distribution. The p^2 space is used to quantify the degree of oblateness, proclivity and sphericity of NPs, while the distribution in r^2 space gives the aspect ratio of NPs. SDEMT and these spaces are used to extract the NP shape distribution and the volume fraction of Au nanoparticles in colloidal solutions and in photonic films from their absorption and ellipsometric spectra, respectively. These distributions are close to the ones obtained from TEM. Contrary to TEM measurements, the NP shape distribution is obtained from a large number of NPs estimated at 10^{10}–10^{12} NPs. In addition, TEM only give the apparent aspect ratio of NPs while the method proposed here leads to the determination of the two aspect ratios of ellipsoidal NPs. Thus, we demonstrate that optical spectroscopy coupled with SDEMT, is an relevant alternative tool to TEM.

References

