An enhanced 3DCNN‐ConvLSTM for spatiotemporal multimedia data analysis - Université de technologie de Troyes
Article Dans Une Revue Concurrency and Computation: Practice and Experience Année : 2019

An enhanced 3DCNN‐ConvLSTM for spatiotemporal multimedia data analysis

Résumé

At present, human action recognition is a challenging and complex task in the field of computer vision. The combination of CNN and RNN is a common and effective network structure for this task. Especially, we use 3DCNN in CNN part and ConvLSTM in RNN part. We divide the video into multiple temporal segments by average and compress each segment into one feature map by pooling layer. Adding the pooling layer, dropout layer, and batch normalization layer into ConvLSTM is our groundbreaking work. We test our model on KTH, UCF‐11, and HMDB51 datasets and achieve a high accuracy of action recognition.
Fichier non déposé

Dates et versions

hal-02297518 , version 1 (26-09-2019)

Identifiants

Citer

Tian Wang, Jiakun Li, Mengyi Zhang, Aichun Zhu, Hichem Snoussi, et al.. An enhanced 3DCNN‐ConvLSTM for spatiotemporal multimedia data analysis. Concurrency and Computation: Practice and Experience, 2019, pp.e5302. ⟨10.1002/cpe.5302⟩. ⟨hal-02297518⟩
76 Consultations
0 Téléchargements

Altmetric

Partager

More