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The electric vehicle routing problem with time windows, partial

recharges and satellite customers

Abstract

In this paper, a new variant of the electric vehicle routing problem is presented. Since
recharging time is commonly considered as idle time, the aim is to take advantage of it by
allowing customer visits by an alternative mode of transport while the electric vehicle is at a
recharging station. This is particularly pertinent in a city logistics context. A mathematical
model is proposed, as well as an Iterated Local Search metaheuristic. The Iterated Local
Search is reinforced by adding Variable Neighborhood Descent and set partitioning. The
proposed method is tested on public instances for E-VRPTWPR. Finally, it is shown that
allowing satellite customers enables us to take advantage of recharging times and to reduce
time spent at recharging stations.

Keywords: electric vehicles, vehicle routing, iterated local search

1. Introduction

In present-day logistics, reducing negative impacts on society and on the environment is
a difficult challenge for companies. According to the European Commission (2016), about
25% of Europe’s greenhouse gas (GHG) emissions are generated by transport activities.
In addition, the main difficulty lies in the fact that most of the fleet used by companies,
is composed of conventional internal combustion vehicles (ICVs). The ICVs contribute to
air pollution, because of the emissions of carbon dioxide (CO2), nitrogen oxides (NOx),
elemental carbon and organic carbon; and contribute to noise pollution as well. As reported
by Nesterova and Quak (2015), since the World Health Organization stated that poor air
quality is a serious health risk, one of the major short term concerns for local authorities
is to improve local air quality. Subsequently, the Electric Vehicles (EVs) get more and
more attention from companies and governments because they can play an important role
in achieving this goal. For a number of years now, there have been a growing number of
projects and national initiatives by European countries aiming to facilitate the use of EVs.
Likewise, there are private initiatives by companies like UPS, La Poste and TNT Express
who have included EVs in their delivery operations (Nesterova et al., 2013).

On the one hand, the usage of EVs leads to some advantages (Schiffer and Walther, 2017).
It represents cleaner transport because they have no local GHG emissions and produce
minimal noise in comparison to ICVs. Moreover, a zero emission balance can be obtained
if renewable energy sources are used to generate the electricity. In addition, the operational
costs and the maintenance costs for EVs have been reported to be lower than those of
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ICVs (Davis and Figliozzi, 2013; Pelletier et al., 2016). On the other hand, it is essential
to address some disadvantages. For example, acquisition cost are higher for EVs than for
ICVs. Also, limited driving range and long charging time affect operational decisions. In
addition, the insufficiency of charging infrastructure is considered an obstacle. Despite that,
due to cutting-edge technology, governmental subsidies, supportive policies, and regulations
for GHG Emissions, EVs are now competitive and are an alternative to ICVs (Davis and
Figliozzi, 2013; Nesterova and Quak, 2015).

To deal with the effects on the operational decisions, studies on Vehicle Routing Problems
(VRP) consider the increase in EVs usage (Afroditi et al., 2014). First, Erdoğan and Miller-
Hooks (2012) proposed a Green Vehicle Routing Problem (G-VRP). In this paper, the fleet is
composed of Alternative Fuel Vehicles (AFV). Later, the Electric Vehicle Routing Problem
with Time Windows (E-VRPTW) was presented by Schneider et al. (2014). In this case,
fleet is composed exclusively of EVs and customers have time windows. Subsequently, the E-
VRP is studied by different authors who consider: mixed fleets with electric and non-electric
vehicles, linear and non-linear recharging models, linear and non-linear energy consumption
models and decisions related to location of recharging stations (RSs). A brief discussion of
the related literature is presented in Section 2. In general, all these studies intend to provide
decision tools, and to encourage the transition to green energies, especially to EVs.

Even so, the intra-route charging time is often considered as a downtime because charging
times could be so long that they affect the total operational time in comparison with the
ICVs routing. Thus, the intention of our paper is to propose a novel variant of the E-VRP
which aims to take advantage of the intra-route charging time. In this variant, we allow
customer visits by an alternative means of transport while the EV is at a RS. In other words,
for each visit to a RS, it is possible to visit one customer while the vehicle is in the charging
process. These customers are called satellite customers. For simplicity, in this document we
call the alternative mode as by walking but it could represent any type of alternative vehicle
(bikes, drones, segways, etc.). In addition, partial recharges, time windows, vehicle capacity,
battery capacity and customer demand are considered.

In general, RSs are managed as parking lots because of the long recharging times. Thus,
the operative cost of visiting a RS is given by the amount of energy recharged but also by
the time a parking lot is occupied. There are even car parks with RS where the charging
fee is according to time. In the proposed problem, the parking time can be longer than
the recharging time because of satellite customers. In the proposed model, with respect
to recharge, it is assumed that the state of charge (SoC) linearly increases in accordance
with a recharge rate and the time spent at RS. Therefore, the objective function is the
minimization of the total time spent at the RSs. This objective implies the reduction of
the total distance given that recharging time depends on energy requirement and that, in
return, depends on the distance travelled. Additionally, it is considered that going by an
alternative mode is commonly slower than going with the EV. So, this objective function
avoids undesirable scenarios (for practitioners) where, because of reducing total distance,
walking times increases and the route duration is affected.

To sum up, the proposed variant allows the intra-route charging time to become an
advantage and to reduce the total distance performed by the EVs. This variant is more
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pertinent for small-package shipping or no capacity service industries in a city logistics
context. The variant is called the Electric Vehicle Routing Problem with Time Windows
and Satellite Customers (E-VRPTWsc).

The paper is structured as follows: in Section 2, a review of related literature is dis-
cussed. In Section 3, the Electric Vehicle Routing Problem with Time Windows and Satellite
Customers (E-VRPTWsc) and the corresponding mathematical model are presented. An
Hybrid-ILS meta-heuristic is proposed as a solution method and is described in Section 4.
The test instances proposed by Schneider et al. (2014) are adapted and computational re-
sults are shown in Section 5. Also, a comparison with the best known solutions (BKS)
of the E-VRPTW with Partial Recharging (E-VRPTWPR) and the benefit of developing
this variant is highlighted. Finally, the conclusions of the paper and an overview of future
research is given in Section 6.

2. Literature review

A short state of the art related to our problem is presented. Interested readers are referred
to Pelletier et al. (2016) and Schiffer et al. (2019). Those surveys provide an overview of
transportation with EV. In this section we first review the papers on vehicle routing with
alternative fuel. Second, we refer to E-VRP and its variants.

Conrad and Figliozzi (2011) extend the CVRP-TW by including vehicles with limited
range. The vehicles are allowed to recharge at customer locations to extend the driving
range. Two objective functions are proposed: the minimization of the number of routes,
and the minimization of total cost related to the travel distance, service time and vehicle
recharging. Two recharging policies are proposed: full charge and partial charge equivalent
to 80% of full battery. As solution method the authors propose a heuristic based on an
iterative construction and improvement algorithm for the CVRP-TW.

Soon afterward, one of the first papers where recharging points were modeled as dedi-
cated points is in the Green Vehicle Routing Problem (G-VRP) considered by Erdoğan and
Miller-Hooks (2012). These points have to be visited to extend vehicle’s driving range. As
mentioned before, in G-VRP the fleet is composed of AFVs and the objective is to minimize
the total distance. The authors use full refueling policy. They introduce two constructive
heuristics, the Modified Clarke and Wright Savings heuristic and the Density-Based Cluster-
ing Algorithm. Other works address the green VRP: Felipe et al. (2014) who present several
heuristics which are used within a non deterministic Simulated Annealing framework; and
Montoya et al. (2016) who design a competitive two-phase heuristic.

To the best of our knowledge, the first reference to the electric vehicle routing problems
can be found in Schneider et al. (2014). The authors introduce the E-VRPTW. It is devoted
to managing EVs, visits to recharging stations and customer time windows. They propose a
hierarchical objective function which aims to minimize the number of vehicles and the total
traveled distance. The recharging time is introduced as a linear function and full charge is
mandatory. The energy consumption is proportional to the distance travelled. They present
a hybrid heuristic that combines a tabu search heuristic with a variable neighborhood search
algorithm. Furthermore, the test instances based on Solomon (1987), are developed. Later,
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Schneider et al. (2015) come up with the vehicle routing problem with intermediate stops
(VRPIS), which is a general framework of a set of VRP’s. In their paper the E-VRP and
the G-VRP are presented as special cases of the VRPIS. They develop an adaptive variable
neighborhood search and perform computational tests on E-VRP and G-VRP instances.

Goeke and Schneider (2015) present the Electric Vehicle Routing Problem with Time
Windows and Mixed Fleet (E-VRPTWMF), an extension of the model presented by Schnei-
der et al. (2014). In this case, the fleet is composed of EVs and ICVs. To study the influence
of different objective functions on the solution, they set three different objectives: 1) traveled
distance, 2) vehicle propulsion and labor cost, and 3) vehicle propulsion, labor and battery
replacement cost. At each recharging stop, EVs are always fully charged, and charging time
is proportional to the amount of energy required for the entire operation. In contrast, the
energy consumption model for each type of vehicle is not linear. It combines speed, gra-
dient and load cargo of each vehicle. As solution method, they develop an adaptive large
neighborhood search algorithm. However, partial recharging policies are not allowed and
strategies to take advantage of the intra-route charging time are not discussed.

Keskin and Çatay (2016) relax the full charge policy and present the E-VRPTWPR.
An Adaptive Large Neighborhood Search (ALNS) algorithm is applied to solve it efficiently.
The results show that partial recharging policies may considerably improve the routing
decisions. After that, Bruglieri et al. (2017) present a three-phase matheuristic combining an
exact method with a variable neighborhood search and local branching. They hierarchically
minimize the number of EVs used and the total route duration of the EVs. Numerical results
are presented for a set of small instances. Desaulniers et al. (2016) come up with an exact
algorithm to solve four variants of the E-VRPTW. The variants are the result of combining
single recharge or multiple recharges per route and partial recharges or full recharges policies.
They present branch-price-and-cut algorithms which use monodirectional and bidirectional
labeling algorithms for generating feasible routes. Hiermann et al. (2016) include a fleet size
problem with heterogeneous fleet in their extension of the E-VRPTW. The vehicle types
differ in transport capacity, battery size and acquisition cost. In this case, the objective
function is to minimize the sum of the costs associated with the distance travelled and the
acquisition cost of the vehicles. However, partial recharges are not covered. A branch-and-
price and a ALNS are proposed.

An extension of the E-VRP which considers nonlinear charging time is defined by Mon-
toya et al. (2017). In this paper, they discuss the pertinence of including the nonlinear
behavior of the recharging time and the partial charging policies in the routing decisions.
Their variant minimizes the total travel distance and charging time including the impact of
charging operations. To solve the model they develop a hybrid metaheuristic combining an
iterated local search and a heuristic concentration (ILS-HC). Froger et al. (2017b) presents
different formulations for this variant. Based on this, Froger et al. (2017a) add capacities on
RS, inducing the fact that a maximum number of EVs can simultaneously charge at each
recharging station.

Schiffer and Walther (2017) extend the E-VRPTWPR by including siting charging sta-
tions. They introduce the electric location routing problem with time windows and partial
recharging (ELRP-TWPR). They use alternative objective functions including minimizing
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distance, minimizing number of vehicles, number of charging stations sited, and minimizing
total cost as well. A mathematical model is presented and a set of small instances is solved
using commercial solvers. Later, Schiffer and Walther (2018) propose the Location Routing
Problem with Intraroute Facilities which is a generalization of the ELRP-TWPR. Large in-
stances of the ELRP-TWPR are solved by using an ALNS which is enhanced by local search
and dynamic programing components.

Recently, a problem focused on reducing the inefficiency of RS in a LRP context can
be found in Schiffer et al. (2018). In the problem it is considered that at the intermediate
stops either energy or freight or both can be replenished. As solution method they apply an
ALNS. New instances are proposed and the performance of the ALNS is tested by solving
instances of the ELRP-TWPR.

Hiermann et al. (2019) introduce an E-VRP combining conventional, plug-in hybrid, and
electric vehicles. They use a metaheuristic approach based on a genetic algorithm hybridized
with an integer programming. They prove the competitiveness of their algorithm solving
E-VRPTW and E-VRPTWPR instances and some new best known solutions are provided.

All the previous related works, including our proposed problem, assume that the EV
batteries are charged in a conductive way. So, it means that the vehicle is plugged into a
electric power source and it must wait until the battery is sufficiently charged. However, there
is another research field which works with battery swapping as a charging system. Yang and
Sun (2015) presents an electric vehicle battery swap station location routing problem (BSS-
EV-LRP). The problem includes location decisions of the battery swapping stations from a
set of candidate places. Later, Hof et al. (2017) uses an Adaptive Variable Neighborhood
Search algorithm to solve the BSS-EV-LRP. They improve the results presented by Yang
and Sun (2015). Another problem working with battery swapping stations is the Dial-a-
Ride Problem with Electric Vehicles and battery swapping stations (DARP-EV) presented
by Masmoudi et al. (2018). It consists of designing vehicle routes and schedules to serve
a set of pre-specified transport requests during a certain planning horizon using EVs. A
variant of DARP is presented by Bongiovanni et al. (2019). They introduce the electric
Autonomous Dial-a-Ride Problem which considers the use of electric autonomous vehicles
(e-ADARP). Even though in this variant EVs are charged in a conductive way, autonomous
vehicles can operate on a non-stop schedule. Thus, the service is not limited by the driver’s
shift and charging times do not represent a driver idle time.

The use of battery swapping stations significantly reduces the recharging time, and it
is considered as an option for reducing the idle time of the conductive recharge. However,
battery swapping requires vehicles using automated battery stations and it presents tech-
nical barriers that complicate its implementation. Some technical barriers include huge
infrastructure cost for the swapping stations, space and cost associated with large stock
of batteries, standardization of vehicle batteries, and the risk of battery damage due to
excessive swapping (Pelletier et al., 2016).

As far as we know, none of the E-VRPs previously presented cover all aspects of our
problem. Most of the existing E-VRPs do not propose strategies to reduce the impact of
the long recharging times associated with the intraroute stops. Thus, we propose a routing
problem which takes E-VRPTW constraints, partial recharges as well as the possibility of
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serving a customer during the recharging operation.

3. Problem statement

The Electric Vehicle Routing Problem with Time Windows and Satellite Customers (E-
VRPTWsc) is defined on a complete directed graph G = (V ′, A) with a set of vertices
V ′ = {V ∪ F ′ ∪ {0, N + 1}} and a set of arcs given by A = {(i, j)|i, j ∈ V ′, i 6= j}. Let
V = {1, ..., N} be the set of customers, F = {0, ...,M} be the set of recharging stations and
F ′ be the set including dummy vertices that represent the multiple visits to vertices on F .
Vertices 0 and N + 1 denote the depot as departing and arriving node respectively. There
is a fixed fleet size of P homogeneous EVs with a cargo load capacity of Q and a battery
capacity B. Each customer i has an associated demand qi, a service time si and a hard
time window [ei, li]. Energy consumption of an EV traveling through an arc (i, j) ∈ A is
determined by the arc distance dij and the consumption rate γ.

Sets
V Set of customer vertices
F ′ Set of dummy vertices that represents the visits to RS on F
V ′ Set of nodes, recharging visits and depot nodes V ′ = {V ∪ F ′ ∪ {0, N + 1}}
Parameters
0, N + 1 Depot nodes
P Number of electric vehicles
Q Load capacity
B Battery capacity
qi Demand of customer i
si Service time of customer i
ei Earliest start of service at node i
li Latest start of service at node i
dij Distance between vertices i and j
tij Travel time between vertices i and j
γ Consumption rate
r Inverse recharging rate
α Walking speed ratio
Decision Variables
t′i Recharging time spend at RSi
t′′ij Walking time at RSi caused by visiting customer j by walking
ICi Initial SoC that is required by the vehicle that departs from the depot and arrives at node i
TRTi Time spent at the RSi during the intraroute charging
τi Arrival time at node i
ui Remaining cargo on arrival at node i
wi Amount of energy recharged at RSi
xij Boolean variable indicating if arc (i, j) is traversed
yi SoC on arrival at node i
zij Boolean variable indicating if the customer j is visited by walking from RSi

Table 1: Variable and parameter definitions of the E-VRPTWsc model.

The E-VRPTWsc seeks to find at most P routes departing from the depot visiting all
customers and coming back to the depot. The routes include the stops at the RS and the
customers visited by walking when needed. For each RS visit, at most one customer can be
visited by walking. The objective function aims to minimize the total time spent at the RS.
This time is composed of: the time to set up the fleet at the beginning of the day and the
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time spent at RSs during the operation. First, it is assumed that EVs are discharged at
beginning of the day. Thus, set up time depends on the initial SoC required for each vehicle
to perform the route and the inverse recharging rate r. The positive variable ICi establishes
the initial SoC that is required by the vehicle that departs from the depot and arrives at
node i ∈ V ′.

Second, the time spent at the RSi during the intraroute charging is represented by the
positive variable TRTi, and it depends on the recharging time and the walking time. The
recharging time t′i is assumed linear and it depends both on the inverse recharging rate r
and the difference between the required energy and SoC on arrival at i ∈ F ′. The walking
time t′′ij is computed when node j ∈ V is assigned as satellite customer departing from RS
i ∈ F ′. In this situation, t′′ij takes into account the walking speed ratio α, sj and [ej, lj].
Finally, TRTi is computed as max{t′i,

∑
j∈V t

′′
ij} for each node i ∈ F ′.

Thus, the problem can be formulated as a mixed-integer linear program (MILP). For
every arc (i, j) ∈ A the boolean decision variable xij is equal to 1 if arc (i, j) is traversed, 0
otherwise. Moreover, for the set of arcs {(i, j)|i ∈ F ′, j ∈ V } the boolean decision variable
zij is defined. It is equal to 1 if the customer j is visited by walking from recharging station
i, 0 otherwise. Variable ui defines the remaining cargo, τi defines the arrival time and yi
defines the SoC on arrival at vertex i ∈ V ′. Variable wi is the amount of energy recharged at
recharging station i ∈ F ′. Finally, the recharging time t′i is computed as rwi. The walking
time t′′ij is computed as τj+sj+αtji−τi. Table 1 summarizes sets, variables, and parameters
of the model.

Using this notation, the E-VRPTWsc can be formulated as the following integer program:

min
∑
i∈V ′

rICi +
∑
i∈F ′

TRTi (1)

Subject to: ∑
j∈V ′,i 6=j

xij +
∑
j∈F ′

zji = 1 ∀i ∈ V (2)

∑
j∈V ′,i 6=j

xij ≤ 1 ∀i ∈ F ′ (3)

∑
j∈V ′,i 6=j

xij −
∑

j∈V ′,i 6=j

xji = 0 ∀i ∈ V ′ (4)

∑
i∈V ′

x0i ≤ P (5)

ui − qixij +Q(1− xij) ≥ uj ∀i ∈ V ′,∀j ∈ V ′, i 6= j (6)

ui − (qkzik) +Q(2− xij − zik) ≥ uj ∀i ∈ F ′,∀j ∈ V ′,∀k ∈ V, i 6= j, j 6= k (7)

ui ≤ Q ∀i ∈ V ′ (8)

rwi ≤ TRTi ∀i ∈ F ′ (9)

τj + (sj + αtji)zij − lN+1(1− zij)− τi ≤ TRTi ∀i ∈ F ′,∀j ∈ V (10)
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yj + cd0j −B(1− x0j) ≤ ICj ∀j ∈ V ′ (11)

τi + (si + tij)xij − lN+1(1− xij) ≤ τj ∀i ∈ V ′,∀j ∈ V ′, i 6= j (12)

τi + αtijzij − lN+1(1− zij) ≤ τj ∀i ∈ F ′,∀j ∈ V (13)

τi + rwi + tijxij − (lN+1 + rB)(1− xij) ≤ τj ∀i ∈ F ′,∀j ∈ V ′, i 6= j (14)

τk + (αtik + sk)zik + tijxij − (lN+1 + rB)(2− xij − zik) ≤ τj ∀i ∈ F ′,∀j ∈ V ′,
∀k ∈ V, i 6= j, j 6= k

(15)

ei ≤ τi ≤ li ∀i ∈ V ′ (16)

yi − γdijxij +B(1− xij) ≥ yj ∀i ∈ V, ∀j ∈ V ′, i 6= j (17)

yi + wi − γdijxij +B(1− xij) ≥ yj ∀i ∈ F ′,∀j ∈ V ′, i 6= j (18)

0 ≤ yi ≤ B ∀i ∈ V ′ (19)

0 ≤ yi + wi ≤ B ∀i ∈ F ′ (20)∑
i∈V

zji ≤ 1 ∀i ∈ F ′ (21)

∑
i∈V ′,i 6=j

xij ≥
∑
i∈V

zji ∀j ∈ F ′ (22)

xij ∈ {0, 1} ∀i, j ∈ V ′, i 6= j (23)

zij ∈ {0, 1} ∀i ∈ F ′, j ∈ V (24)

ui, τi, ICi, yi ≥ 0 ∀i ∈ V ′ (25)

TRTi, wi ≥ 0 ∀i ∈ F ′ (26)

The objective function (1) minimizes the total recharging time at depot and at recharging
stations. Constraints (2) state that all customers have to be visited once while recharging
stations and dummy vertices cannot be visited more than once, constraints (3). Flow con-
servation constraints (4) guarantee for each vertex that the number of incoming arcs is
equal to the number of outgoing arcs. Fleet size is considered by constraints (5). Load
flow and fulfillment of demand are represented by constraints (6) for all the vertices and by
constraints (7) for those vertices visited after visiting a recharging station, where demand
of a customer visited by walking affects the remaining load. Vehicle capacity is restricted
by constraints (8). Total time spent at recharging stations is governed by t′i represented by
constraints (9), and by t′′ij defined by constraints (10). The SoC required for each route at
depot is represented in constraints (11). For the arrival times at each vertex three situations
have to be considered: constraints (12) link arrival time for a vertex j in a vehicle route,
constraints (13) link arrival time for a customer j visited by walking while constraints (14)
and (15) link arrival time for a vertex j visited after a recharging station i. Time windows
are respected by constraints (16).

Battery level at a vertex following a customer visit is set by constraints (17) while
constraints (18) set battery level at vertex after a recharging station visit. Battery capacity
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is guaranteed by constraints (19) and (20). Constraints (21) establish the maximum number
of satellite customers that could be attended from each visit at a recharging station. Relation
between variables x and z is represented in constraints (22). Finally, (23)-(26) are the
definition domain of variables.

4. Solution method

The E-VRPTWsc is an extension of the VRP and belongs to NP-hard problems. Our
aim is to solve large instances in reasonable times, and it is well known that the use of
metaheuristics is an efficient way to handle these type of problems. Accordingly, our solution
method is based on an Iterated Local Search (ILS) metaheuristic framework.

Algorithm 1 Hybrid ILS

1: procedure Hybrid ILS(MaxILSIter,NbNoImp)
2: S̃ ← 0;
3: best cost←∞;
4: i← 0, j ← 0;
5: Ω ← ∅;
6: S̃ ← RandomizeParallelInsertion();
7: while i ≤ MaxILSIter and j ≤ NbNoImp do
8: S ← Perturbation (S̃);
9: S ← VND (S);

10: Ω ← Ω ∪ S;
11: i← i+ 1, j ← j + 1;
12: if f(S) ≤ best cost then
13: S̃ ← S;
14: best cost← f(S);
15: j ← 0;
16: end if
17: end while
18: S̃ ← SetPartitioning(Ω);
19: return (S̃);
20: end procedure

ILS is an effective method for several vehicle routing problems. As Lourenço et al. (2003)
detail, it generates a sequence of local optima by alternating local search and perturbation.
To enhance this basic framework, our ILS is hybridized with a Variable Search Descending
algorithm (VND) as local search component and with a set partitioning model as post-
optimization phase. VND is a variant of the variable neighborhood search metaheuristic
systematically changing the neighborhood each time no improvement is found by the current
local search (Mladenović and Hansen, 1997). The set partitioning component uses an MILP
to select a subset of routes (columns in the set partitioning model) among a set of feasible
routes, in such a way that each customer is visited once. In the proposed algorithm, these
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feasible routes are generated and stored during the ILS phase. Adding a set partitioning
component to an ILS structure has been used to solve other VRP variants demonstrating
good performance: Subramanian et al. (2012) for the Heterogeneous Fleet Vehicle Routing
Problem, Villegas et al. (2013) for the truck and trailer routing problem and Morais et al.
(2014) for the the Vehicle Routing Problem with Cross-Docking.

Algorithm 1 presents the pseudo-code of the Hybrid ILS proposed. First, an initial solu-
tion S̃ is generated using a randomized parallel insertion heuristic, as described in Subsection
4.3. In this step, time window and battery limit violations are allowed. To manage infeasible
solutions, the objective function is penalized (see Subsection 4.1). Second, the perturbation
component consists of removing a set of η customers and reinserting them at new positions.
It is explained in detail in Subsection 4.4. Third, the local search is carried out by the VND
component detailed in Subsection 4.5. In short, the VND is composed of classical operators
adapted to manage RSs and satellite customers (see Subsection 4.2). Once the perturbation
and the VND procedures are applied, a solution S is obtained. S is composed of a set of
routes which are added to Ω, the set of “best” routes. The ILS component (perturbation
+ local search) is executed until MaxILSIter iterations or NbNoImp iterations without
improvement are reached. Finally, the set partitioning model is executed using Ω as the set
of columns. This is explained in Subsection 4.6.

4.1. Generalized cost function

Since the problem is highly constrained (time windows, fleet size, battery and capacity),
allowing the solution search to visit infeasible regions may be promising to facilitate the
exploration, and this option is exploited in our approach.

To handle infeasible routes, the objective function of a solution S considers the total
time spent at RSs, time window penalty, and battery penalty. This strategy is successfully
implemented by Schiffer and Walther (2018) for the location-routing problem with intra-
route facilities. They test their method with various problems including the electric location-
routing problem with time windows and partial recharges. Their generalized cost function
and penalty functions are taken and adapted, to be able to handle the satellite customers.
For the Hybrid ILS, the generalized cost function is defined as:

fgen(S) = f(S) + λ(TW (S) +BT (S)) (27)

Where f(S) denotes the original objective function (Eq. 1). TW (S) represents time
window violations and BT (S) battery violations. Those are scaled by the penalty factor
λ. The magnitude of λ allows the local search to stay for shorter or longer periods in the
unfeasible region. Thus, a large λ guides the search directly to feasible regions, while with a
small λ to reach a feasible solution could take longer. This penalty approach is proven to be
efficient (see, e.g., Goeke and Schneider (2015) for the E-VRPTW, Vidal et al. (2013) for a
large class of vehicle routing problems with time windows, and Nagata et al. (2010) for the
vehicle routing problem with time windows).

Since a solution S is defined by a set of P routes (S = {π1, π2, ..., πP}), the total time
spent at RSs f(S), the total time window penalty TW (S) and total battery penalty BT (S)
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are calculated by summing total time at RSs per route or route penalties for the routes of
solution S, as follows:

f(S) =
P∑
j=1

f(πj) (28)

TW (S) =
P∑
j=1

TW (πj) (29)

BT (S) =
P∑
j=1

BT (πj) (30)

4.2. Move evaluation

Evaluating moves implies: computing the change in the objective function; verifying
vehicle capacity feasibility, and computing time window and battery penalties. It is well
known that the vehicle capacity can be checked in O(1). As explained by Goeke and Schnei-
der (2015), feasibility in battery capacity can be also verified in O(1) if energy consumption
is independent of cargo load. Likewise, Schiffer and Walther (2018) shows that time win-
dow and battery penalties could be computed in O(1) for the EVRP-TWPR when a node
is inserted between two partial routes. But if route segments with two or more nodes are
inserted between two partial routes, penalties have to be extended for the route segment
first.

In the proposed variant, walking time affects the time spent at an RS. It means that
route’s minimum duration depends on travel time, recharging time, walking times and time
windows. The complexity of handling the time variation affects the evaluation of the objec-
tive function and the penalties. As mentioned above, in the proposed method time window
and battery penalties evaluations are adapted from those proposed by Schiffer and Walther
(2018). To evaluate time window and battery penalties they propose a corridor-based penalty
approach. The time traveling concept (Time Warp) is used and it allows violations to be
computed without overpenalizing route segments. This methodology permits inter-route
moves to be evaluated in constant time, while for intra-route moves it requires updating
information on the route segment affected by the movement. The latter can be achieved by
having an efficient move evaluation. Therefore, forward functions, backward functions, and
concatenation operators are needed and they are presented below.

4.2.1. Forward functions

For evaluating the proposed functions all resource dependencies are modeled in time
units. The notation used by Schiffer and Walther (2018) is preserved and extended to
the new variables. Thus, time needed to recharge the energy consumed on an arc (i, j) is
denoted as hij = r ∗dij, and time needed to recharge the full battery capacity is represented
by H = r ∗ B. The variables required to estimate the objective function, the time window
penalty and the battery penalty are presented in Table 2.
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acosti Cumulated recharging time at leaving vertex i
arwi Cumulated extra recharging time due to walking at leaving vertex i
amin
i Earliest allowed arrival time at a vertex i
amax
i Arrival time at vertex i if as much energy as possible was recharged at preceding RS
aslij Slack between vertex i and vertex j due to time windows when traveling from i to j.
arti Inverse residual battery capacity at vertex i
aaddij Additional energy that has to be charged at the preceding RS to travel arc (i, j).

ãmin
i ∧ ãmax

i If a violation occurs amin
i and amax

i are shifted to ãmin
i and ãmax

i . It prevents repeated
penalization.

Table 2: Forward functions variables

In E-VRP problems with partial recharges, the RSs usually do not have short time
windows (even any time window) or fixed service time. However, in the proposed model if
an RS has assigned a customer i ∈ V to be visited by walking, it is necessary to consider
customer time window and service time. For this reason, for each RS visit j ∈ F ′ a service
time (walking time) s′j, an earliest arrival time e′j, and a latest arrival time l′j are computed
before each local search iteration. This is done using the following equations (31) - (33).

s′j =

{
αtji + si + αtij if a customer i ∈ V is visited “by walking”

0 otherwise
(31)

e′j =

{
max{ei − αtji, ej} if a customer i ∈ V is visited “by walking”

ej otherwise
(32)

l′j =

{
min{li − αtji, li} if a customer i ∈ V is visited “by walking”

li otherwise
(33)

In the following, the equations to extend each variable ax with x ∈ {rw, cost,min,max,
sl, rt, add} from vertex i to vertex j are presented. A brief description of how variables
move forward on a route from vertex i to vertex j is given, and the main differences from
the original functions is explained. However, for a detailed description of each variable and
the different penalty cases we refer the reader to Schiffer and Walther (2018).

To compute the objective function, two new variables are added. First, arwi keeps track
of the cumulated extra recharging time spent at previous RSs due to walking at leaving
vertex i. So, if arwi > 0, it means that the EV spent more time at the RS because of walking
activity than the time required to recharge the energy consumed up to node i. It is obtained
by adding the walking time s′j when a RS j is visited, and subtracting the energy consumed
on the arc (i, j).

arwj =

{
min{s′j + max{arwi − hij, 0}, H} if j ∈ F ′

max{arwi − hij, 0} otherwise
(34)

Second, acosti indicates the cumulated time spent at RSs when leaving vertex i. It in-
creases when visiting a customer by walking or because of the energy consumed on the arc
(i, j) when arwi = 0 (when no extra energy is recharged in previous RSs).
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acostj =

{
acosti + max{hij − arwi , 0}+ s′j if j ∈ F ′

acosti + max{hij − arwi , 0} otherwise
(35)

The earliest arrival time aminj for vertex j and the slack aslij are adapted. In the proposed
version, those variables include e′i and s′i for the cases when an extension is made from a RS
where a customer is visited by walking.

aminj =

{
max{ej,max{e′i, ãmini }+ s′i + tij}+ aaddij if i ∈ F ′

max{ej, ãmini + si + tij}+ aaddij otherwise
(36)

aslij =

{
max{ej − (max{e′i, ãmini }+ s′i + tij), 0} if i ∈ F ′

max{ej − (ãmini + s′i + tij), 0} otherwise
(37)

In the same way, variables amaxj , artj , and aaddij are modified by including e′i and s′i for the
cases when an extension is made from a RS where a satellite customer is visited. However,
because of the changes on variable aminj , a new slack must be considered. It is defined by
the expression max{e′i − ãmini , 0}. Following the strategy observed with the walking time s′i
and aslij, this new slack time is included and considered as a recharging time.

amaxj =


max{ej,max{e′i, ãmini }
+ max{arti − s′i −max{e′i − ãmini , 0}, 0}+ s′i + tij} if i ∈ F ′

max{ej, ãmaxi + si + tij, 0} otherwise

(38)

artj =

{
min{H,max{arti − s′i − aslij −max{e′i − ãmini , 0}, 0}+ hij} if i ∈ F ′

min{H,max{arti −min{aslij, ãmaxi − ãmini }, 0}+ hij} otherwise
(39)

aaddij =

{
max{max{arti − s′i − aslij −max{e′i − ãmini , 0}, 0}+ hij −H, 0} if i ∈ F ′

max{max{arti −min{aslij, ãmaxi − ãmini }, 0}+ hij −H, 0} otherwise
(40)

Time window penalties and battery penalties can be calculated following the original
functions. Likewise, the shifts between amini and amaxi to ãmini and ãmini remain the same.
The only thing to keep in mind is when i ∈ F ′ or v ∈ F ′ (when a RS is visited) li and lv
must be replaced with l′i and l′v respectively in equations (41)-(44).

−−→
TW (πi) =

∑
v∈πi

max{min{amaxv , aminv } − lv, 0} (41)

−→
BT (πi) =

∑
v∈πi

max{aminv − amaxv , 0} (42)

ãmini = min{amini , amaxi , li} (43)
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ãmaxi = min{li,min{amini , amaxi , li}+ max{amaxi − amini , 0}} (44)

Initial values for these variables to estimate forward functions on a route are acost0 =arw0 =
amin0 =amax0 =ãmin0 =ãmax0 =artj =0.

With these adjusted functions, the corridor based-approach presented by Schiffer and
Walther (2018) is able to address the forward functions including partial and time-dependent
charges, and satellite customers. The backward functions are adapted as well, following the
same strategy used for the forward functions. The original notation is preserved, so backward
functions are referred to as bx with x ∈ {cost, rw,min,max, sl, rt, add} and as b̃maxi and b̃mini

as well. Finally, these functions are listed in Appendix A.

4.2.2. Concatenation operators

The formulae for time-efficient route concatenation are also adjusted and presented be-
low. A new formula to estimate the objective function is presented as well.

For a route πe = 〈0, ..., x, v, y, ..., n + 1〉, which is constructed by inserting vertex 〈v〉
between two partial routes π1 = 〈0, ...x〉 and π2 = 〈y, ..., n + 1〉, the objective function
of route πe is computed using Equation (45). In that case it is necessary to compute the
forward and backward functions for node v.

f(πe) = acostv + bcostv −min{arwv , brwv } (45)

The time window penalty for route πe is calculated in constant time using Equation (46).
It sums the penalty of each partial path. Additional penalties are added if the time window
[ev, lv] or the overall route duration is violated. Note that in the case where v ∈ F ′, ev and
lv must be replaced with e′v and l′v.

TW (πe) =
−−→
TW (π1) +

←−−
TW (π2) + max{0, aminv − lv −max{0, aminv − amaxv }}+

max{0,max{ev,min{aminv , amaxv , lv}} − bminv −max{0, bmaxv − bminv }} (46)

The battery penalty for route πe is calculated in constant time using Equation (47).
It includes the penalty of each partial path. Additional penalties are added if the new
route contains a route segment where the energy required exceeds the battery capacity.
If an RS is located at vertex v, additional recharging time or additional walking time is
included. However, additional time window penalties due to time at RS are already included
in Equation (46) and ignored within (47) and (48) to avoid overpenalization. Because of
the changes on the variables, the expressions max{0, e′v− (aminv −max{0, aminv −amaxv })} and
max{0,max{0, bmaxv − bminv }− l′v}, which represent new slack times (for v ∈ F ′), are included
as recharging times.

BT (πe) =
−→
BT (π1) +

←−
BT (π2) + max{0, aminv − amaxv } + max{0, bmaxv − bminv } + C (47)

14



C =



max{0,max{0, artv −max{0, e′v − (aminv −max{0, aminv − amaxv })}}
+ max{0, brtv − s′v −max{0, bminv + max{0, bmaxv − bminv } − l′v}} −H−
min{max{0, artv −max{0, e′v − aminv + max{0, aminv − amaxv }}},
max{0,min{l′v,max{bmaxv , bminv }} −max{e′v,min{aminv , amaxv }}}}} if v ∈ F ′

max{0, artv + brtv −H −min{H,max{0, bminv − bmaxv }+ max{0, amaxv − aminv },
max{0,min{lv,max{bminv , bmaxv }} −min{aminv , amaxv }}}} otherwise

(48)

For a route πe = 〈0, ..., x, y, ..., n + 1〉, constructed by concatenating two partial routes
π1 = 〈0, ...x〉 and π2 = 〈y, ..., n + 1〉, the objective function of route πe is computed using
Equation (45). In that case it is necessary to compute the forward functions for node y.
Following the strategy applied above, the time window penalty can be determined by (49),
while the battery penalty is determined with (50) and (51).

TW (πe) =
−−→
TW (π1) +

←−−
TW (π2) + max{0, aminy − ly −max{0, aminy − amaxy }}+

max{0,max{ey,min{aminy , amaxy , ly}} − b̃miny } (49)

BT (πe) =
−→
BT (π1) +

←−
BT (π2) + max{0, aminy − amaxy }+D (50)

D =



max{0,max{0, arty −max{0, e′y − (aminy −max{0, aminy − amaxy })}}
+ max{0, brty − s′v − (bminv − l′v)} −H−
min{max{0, artv −max{0, e′v − aminv + max{0, aminv − amaxv }}},
max{0,min{l′v, bminv } −max{e′v,min{aminv , amaxv }}}}} if v ∈ F ′

max{0, artv + brtv −H −min{H,max{0, bminv − bmaxv }+ max{0, amaxv − aminv },
max{0,min{lv,max{bminv , bmaxv }} −min{aminv , amaxv }}}} otherwise

(51)

With these expressions, the objective function, the time window penalties, and the energy
violations can be derived in constant time for every inter-route neighborhood structure
considered in this document. It must be remembered that for the intra-route movements
the evaluation is done in linear time.

4.3. Initial solution

The Hybrid ILS starts by generating an initial solution using a greedy randomized parallel
insertion heuristic. First, P routes are opened. Second, the set of customers is sorted in
decreasing order based on their latest arrival time li. Then, a random customer from the first
φ customers is selected. Using the generalized cost function as criteria (see Subsection 4.1),
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the node is inserted following a best insertion strategy. During the procedure the vehicle
capacity constraint is always respected. This procedure is repeated until all customers are
assigned to a route. Afterwards, some battery and time window infeasible routes can remain.
Finally, the local search is applied (see Subsection 4.5) to repair the initial solution. Note
that, at the end, the initial solution may still contain some time window and battery limit
violations which will be managed through the penalties during the ILS phase.

4.4. Perturbation

The perturbation consists of removing η random customers, then grouping them into a
set of removed nodes. Later, one node is selected randomly and it is inserted in a arbitrary
position. The new position must be different from the original location, and the capacity
constraint must be guaranteed. It is done one by one for all the removed customers. If
a customer cannot be inserted in any route because of capacity constraint, the process is
restarted.

4.5. Variable Neighbourhood Descent - VND

The VND is implemented as local search strategy following a best improvement strategy.
It is composed of a neighborhood set based on classic operators (Relocate, Swap and 2-
OPT*). Additionally, operators Insert RS and Remove RS for inserting and removing visits
to recharging stations are included. These operators are used successfully by Schneider et al.
(2014) and Goeke and Schneider (2015) showing high performance. The operators included
are described below.

• Relocate: Removes one node from its current route and reinserts it elsewhere.

• Swap: Exchanges two non consecutive nodes.

• 2-OPT*: Removes two edges from two different routes and reconnects them by two
new edges.

• InsertRS: Inserts a visit to a RS. There are two types of insertion. First a simple
visit to a recharging station is evaluated. Second, an insertion where a customer visit
is replaced by a RS visit, and the customer is assigned to be visited by walking.

• Remove RS: Removes a visit to a RS. If the RS has assigned a customer to be visited
by walking, the evaluation considers that the customer is inserted in the position where
the RS was.

Relocate and Swap are applied for intra- and inter-route moves, 2-OPT* is designated for
inter-route moves. Swap is determined to handle only customers. Relocate handle customers
and for intra-route moves it deals with RSs. And as it is described above, 2-OPT* is only
applied for inter-route moves.

Additionally, new specific operators for assigning or removing customers serviced by
walking are included. These operators still rely on the Relocate and Swap strategies.
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• BecomeSatellite: Assign a customer to be visited by walking from an already visited
RS.

• BecomeByVeh: Insert a customer that was assigned to be visited by walking into a
the vehicle route.

• SwapVehSat: Exchange between a customer that is visited by walking and a customer
that is visited in the vehicle route.

The above-mentioned movements are applied for intra- and inter-route changes. In the
VND, first the inter-routes moves are evaluated, because they are where evaluations are
performed in constant time. Those are followed by InsertRS and the intra-route versions
of the moves. At the end RemoveRS looks for ways to clean unneeded RS stops from the
solution.

4.6. Set partitioning component

The set partitioning model is solved once ILS finishes. Let Ω be the set of routes stored
during the ILS phase. Let ρk be the cost of the route rk ∈ Ω and ξik = 1 if route rk visits
node i and 0 otherwise. Thus, the E-VRPTWsc can be described with the following set
partitioning model:

min
∑
rk∈Ω

ρkθk (52)

∑
rk∈Ω

θk ≤ P (53)

∑
rk∈Ω

ξikθk = 1 ∀i ∈ V (54)

θk ∈ {0, 1} ∀rk ∈ Ω (55)

The binary decision variable θk is equal to 1 if route rk is selected in the solution, and
equal to 0 if not. Constraint (53) limits the number of vehicles that are used. Finally,
constraints (54) guarantee that customers must be served once.

5. Computational experiments

A set of instances for E-VRPTWsc can be easily obtained from the E-VRPTW instances
as the E-VRPTW is a special case of the E-VRPTWsc where no customer is assigned to be
visited by walking and full charges are performed.

The set of instances proposed by Schneider et al. (2014) for the E-VRPTW are created
based on the benchmark instances proposed by Solomon (1987) for the VRPTW. The in-
stances are classified into three groups: clustered customer distribution (c), random customer
distribution (r) and a mixture between random/clustered customer distribution (rc).
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Since the proposed variant includes an alternative transportation mode, it is meant to
be suitable in a city logistics framework. Thus, the c instances are interesting to analyze
because they represent geographical scenarios where distances, times and speed allow us
to take advantage of the recharging times. A brief analysis is provided in Section 5.4 and
Section 5.5.

For large-size instances, three sets of instances are created by fixing α parameter to 1.5,
2 and 4. It represents scenarios with three different types of walking speeds, in other words,
three types of alternative modes. For small size instances parameter α is fixed at 2. NB
α = 2 means that the time of traveling through an arc by walking takes twice the time that
is required by the EV to perform the same distance. The number of vehicles is established
using the values of the updated BKS for the E-VRPTWPR. To the best of our knowledge,
these BKS are found in the results presented by Keskin and Çatay (2016), Schiffer and
Walther (2018) and Hiermann et al. (2019).

Section 5.1 presents the parameter tuning. The influence of the initial solution quality
is analyzed in Section 5.2. Results for the large size E-VRPTWPR (no walking allowed) are
shown in Section 5.3 to prove the competitiveness of the Hybrid-ILS. In Section 5.4 and 5.5
results for small and large size E-VRPTWsc instances are presented. A comparison with
the BKS of the E-VRPTWPR is also presented, to evaluate the pertinence of the variant.

The hybrid-ILS is implemented in C++. The method is executed on a machine with
Intel Core i5-5300U processor with 2.30GHz speed and 8 GB RAM.

5.1. Parameter setting

The hybrid-ILS proposed has four parameters to be tuned: φ, η, λ ,and MaxILSIter
(see Section 4). The influence of modifying φ, η and λ parameters is evaluated by running
a subset of 14 instances five times with different parameter combinations. The size of the
subset of candidate customers to be inserted φ is used to build the initial solution, and it
is expressed as a percentage of the total number of customers. η represents the number of
customers to be relocated in the perturbation, and it is expressed as a percentage of the
total number of customers. Penalties are scaled by λ. Since penalties are expressed in time
units, λ is fixed as a percentage of the Tmax (time horizon). The different combinations of
η and λ parameters tested are presented in Table 3. Also presented are average objective
function GAP percentage of the best of 5 (∆fbest), and average objective function GAP
percentage of the average of 5 (∆f). In the test MaxILSIter is fixed at 5000 iterations and
φ in 0.05|V |. Average computational time t is presented in minutes. Average number of
iterations required to reach the best solution of each run is presented as κ and average time
to reach the best solution of each run is noted by tbest. GAPs are measured with respect to
the best solution found for each instance during the entire test.

The results show that smaller GAPs can be obtained by setting λ between 1% and
5%, and fixing η between 15% and 20%. Because the quality of solutions is not very dif-
ferent, and based on the execution time parameter, the configuration λ = 0.01Tmax and
η = max{2, 0.15|V |} is selected. η parameter is presented in this way because in small
instances with 5 customers, 15% of total customers represents just one customer and the
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η
5% 10% 15% 20%

λ

1%

∆fbest 0.88 0.47 0.39 0.23

∆f 2.14 1.15 1.04 1.03
t 1.37 2.58 4.02 5.72
κ 2718.51 2080.13 1906.77 1818.64
tbest 0.73 1.05 1.49 2.01

5%

∆fbest 1.04 1.00 0.70 0.40

∆f 1.98 1.57 1.24 0.97
t 1.41 2.76 4.32 6.28
κ 2581.59 2035.97 2065.53 2005.47
tbest 0.72 1.09 1.76 2.51

10%

∆fbest 1.02 0.49 0.52 0.36

∆f 2.11 1.46 1.19 1.17
t 1.41 2.83 4.41 6.20
κ 2607.16 2225.10 2027.43 2083.30
tbest 0.73 1.24 1.82 2.62

50%

∆fbest 0.90 0.84 0.52 0.48

∆f 2.00 1.64 1.19 1.26
t 1.43 2.86 4.44 6.29
κ 2589.77 2336.87 2312.53 2022.66
tbest 0.74 1.34 2.05 3.22

100%

∆fbest 0.82 0.82 0.47 0.61

∆f 2.20 1.64 1.17 1.20
t 1.42 2.84 4.47 6.31
κ 2531.67 2155.43 2010.71 2311.43
tbest 0.72 1.22 1.83 2.96

Table 3: Results using different parameter settings for η and λ on a subset of the E-VRPTWsc instances.

perturbation is not large enough. Once these parameters are fixed, the influence of the num-
ber of iterations MaxILSIter is analyzed by plotting the behavior of the ILS component
on 5 runs of the algorithm for four different instances.

Figure 1 shows the results of the test. Based on that information, the parameter
MaxILSIter is set at 4000 iterations and NbNoImp at 2500 iterations without improve-
ment.

5.2. Initial solution impact

The influence of the initial solution is analyzed in two ways. First, the influence of the
randomness on the construction of the initial solution is tested versus a purely greedy con-
struction. Table 4 shows the different φ values tested, and ∆fbest and ∆f values introduced
above. TWmin show the average of the smallest penalty value found in the initial solution

of the 5 runs. TWmin the average penalty value in the initial solution. Second, by looking
at Figure 1 it is possible to see how the algorithm performs by using initial solutions with
different qualities. The graphs do not show a clear link between the quality of the initial
solution and the quality of the final solution.

According to the results, φ parameter is fixed on 0.05|V |. This is because, on average,
configurations with small φ values produce initial solutions with fewer penalties and to reach
better solutions. Likewise, results show that having a randomness in the initial solution allow
us to reach better solutions.
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Figure 1: (Color online) Behavior of ILS component on four E-VRPTWsc instances

φ
Greedy 5% 15% 50% 100%

TWmin 16.90 2.89 2.61 4.01 5.18

TWmin 16.90 19.93 20.12 23.92 28.85
∆fbest 0.79 0.08 0.40 0.48 0.34

∆f 1.29 0.89 1.06 1.16 0.97

Table 4: Results using different parameter settings for φ on a subset of the E-VRPTWsc instances.

5.3. Results for the EVRP-TWPR

To validate the performance of the proposed Hybrid ILS approach, this method is used
to solve EVRP-TWPR instances. Thus, in the VND component every evaluation involving
nodes visited by walking are dropped.

The best solutions, obtained after executing the Hybrid ILS 10 times for each instance,
are reported in Table 5. Those results are compared with the best known solutions (BKS)
found by state-of-the-art algorithms: the ALNS proposed in Keskin and Çatay (2016) (KÇ),
the ALNS presented in Schiffer and Walther (2018) (S&W) and the hybrid genetic algorithm
presented in Hiermann et al. (2019) (HGA). As none of the methods finds the BKS for all
the instances, an individual comparison with each method is presented as well. The results
shown in the table for other authors also correspond to the best solution found after 10 runs.

The results in Table 5 show that our algorithm is able to reach solutions for the E-
VRPTWPR with an average gap of −0.34% with regard to BKS. Moreover, it is able to
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BKS KÇ1 S&W2 HGA3 Hybrid ILS4

Inst. m ϕaD m ϕbD m ϕcD m ϕdD m ϕdD ∆a
D ∆b

D ∆c
D ∆d

D t
c101 12 1043.38 12 1043.38 12 1043.38 12 1044.51 12 1043.38 0.00 0.00 0.00 -0.11 1.12
c102 11 1029.44 11 1032.49 11 1029.44 11 1033.80 11 1017.70 -1.14 -1.43 -1.14 -1.56 1.46
c103 10 971.86 10 973.39 10 971.86 10 1001.13 10 971.19 -0.07 -0.23 -0.07 -2.99 2.08
c104 10 884.38 10 886.72 10 884.38 10 893.04 10 884.38 0.00 -0.26 0.00 -0.97 1.72
c105 11 1037.78 11 1037.78 11 1048.06 11 1052.95 11 1015.79 -2.12 -2.12 -3.08 -3.53 1.25
c106 11 1010.56 11 1024.18 11 1010.56 11 1043.50 11 1009.33 -0.12 -1.45 -0.12 -3.27 1.42
c107 10 1058.11 10 1058.11 11 1010.91 11 1013.76 10 1046.50 -1.10 -1.10 - - 1.85
c108 10 1031.85 10 1033.5 10 1031.85 11 1000.56 10 1022.48 -0.91 -1.07 -0.91 - 1.99
c109 10 940.38 10 946.84 10 940.38 10 946.84 10 940.38 0.00 -0.68 0.00 -0.68 2.28
c201 4 629.95 4 629.95 4 629.95 4 658.11 4 629.95 0.00 0.00 0.00 -4.28 1.11
c202 4 629.95 4 629.95 4 629.95 4 645.39 4 629.95 0.00 0.00 0.00 -2.39 1.47
c203 4 629.95 4 629.95 4 629.95 4 643.45 4 629.95 0.00 0.00 0.00 -2.10 1.91
c204 4 628.91 4 629.95 4 628.91 4 636.43 4 628.91 0.00 -0.16 0.00 -1.18 2.29
c205 4 629.95 4 629.95 4 629.95 4 638.17 4 629.95 0.00 0.00 0.00 -1.29 1.41
c206 4 629.95 4 629.95 4 629.95 4 635.38 4 629.95 0.00 0.00 0.00 -0.86 1.65
c207 4 629.95 4 629.95 4 629.95 4 632.80 4 629.95 0.00 0.00 0.00 -0.45 1.73
c208 4 629.95 4 629.95 4 629.95 4 638.17 4 629.95 0.00 0.00 0.00 -1.29 1.71
r101 18 1615.50 18 1636.69 18 1615.50 18 1630.14 18 1606.98 -0.53 -1.82 -0.53 -1.42 2.49
r102 15 1521.33 16 1461.38 16 1429.80 15 1521.33 15 1461.23 -3.95 - - -3.95 2.68
r103 13 1244.15 13 1262.75 13 1244.15 13 1264.81 13 1212.37 -2.55 -3.99 -2.55 -4.15 2.81
r104 11 1056.87 11 1078.99 11 1056.87 11 1089.92 11 1051.41 -0.52 -2.56 -0.52 -3.53 3.09
r105 14 1347.80 15 1373.94 14 1347.80 14 1396.80 14 1362.31 1.08 - 1.08 -2.47 2.77
r106 13 1268.25 13 1310.46 13 1268.25 13 1281.09 13 1256.19 -0.95 -4.14 -0.95 -1.94 2.76
r107 12 1110.95 12 1118.91 12 1110.95 12 1127.71 12 1108.47 -0.22 -0.93 -0.22 -1.71 2.56
r108 11 1020.52 11 1031.14 11 1020.52 11 1042.80 11 1020.52 0.00 -1.03 0.00 -2.14 3.01
r109 12 1186.99 13 1193.76 12 1186.99 12 1265.82 12 1185.77 -0.10 - -0.10 -6.32 3.24
r110 11 1070.99 11 1090.92 11 1070.99 11 1095.00 11 1071.92 0.09 -1.74 0.09 -2.11 3.18
r111 11 1147.23 12 1084.13 12 1072.21 11 1147.23 11 1072.46 -6.52 - - -6.52 3.25
r112 11 1001.79 11 1017.31 11 1001.79 11 1013.95 11 1001.79 0.00 -1.53 0.00 -1.20 3.22
r201 3 1255.81 3 1262.1 3 1255.81 3 1261.64 3 1255.81 0.00 -0.50 0.00 -0.46 3.04
r202 3 1051.46 3 1052.32 3 1051.48 3 1051.46 3 1051.46 0.00 -0.08 0.00 0.00 2.23
r203 3 895.54 3 895.54 3 895.96 3 900.60 3 895.54 0.00 0.00 -0.05 -0.56 2.73
r204 2 783.53 3 720.15 3 779.49 2 783.53 2 780.91 -0.33 - - -0.33 4.44
r205 3 987.36 3 987.36 3 988.55 3 987.36 3 987.22 -0.01 -0.01 -0.13 -0.01 2.56
r206 3 922.70 3 922.70 3 922.83 3 924.48 3 922.70 0.00 0.00 -0.01 -0.19 2.62
r207 2 843.20 2 846.59 2 843.20 2 846.53 2 857.07 1.65 1.24 1.65 1.24 3.61
r208 2 736.12 2 736.12 2 736.12 2 736.64 2 738.84 0.37 0.37 0.37 0.30 3.38
r209 3 863.36 3 868.95 3 863.36 3 867.80 3 870.68 0.85 0.20 0.85 0.33 2.49
r210 3 843.36 3 843.36 3 846.33 3 845.27 3 846.62 0.39 0.39 0.03 0.16 2.34
r211 2 827.29 2 862.56 2 827.29 2 857.10 2 826.88 -0.05 -4.14 -0.05 -3.53 3.79
rc101 15 1648.99 15 1743.9 15 1648.99 15 1725.73 15 1661.53 0.76 -4.72 0.76 -3.72 2.62
rc102 14 1510.16 14 1555.5 14 1510.16 14 1540.26 14 1510.16 0.00 -2.91 0.00 -1.95 2.58
rc103 12 1388.72 13 1329.58 13 1304.35 12 1388.72 12 1346.83 -3.02 - - -3.02 2.62
rc104 11 1175.06 11 1202.93 11 1175.06 11 1181.26 11 1175.83 0.07 -2.25 0.07 -0.46 2.70
rc105 14 1450.82 14 1458.49 14 1450.82 14 1463.49 14 1446.30 -0.31 -0.84 -0.31 -1.17 2.55
rc106 13 1385.96 13 1417.4 13 1385.96 13 1397.55 13 1383.14 -0.20 -2.42 -0.20 -1.03 2.68
rc107 12 1250.30 12 1261.03 12 1250.30 12 1255.03 12 1244.83 -0.44 -1.28 -0.44 -0.81 2.63
rc108 11 1154.14 11 1184.06 11 1154.14 11 1165.60 11 1159.90 0.50 -2.04 0.50 -0.49 2.48
rc201 4 1445.17 4 1446.84 4 1445.17 4 1446.03 4 1443.07 -0.15 -0.26 -0.15 -0.20 2.34
rc202 3 1408.08 3 1416.96 3 1408.08 3 1434.18 3 1403.32 -0.34 -0.96 -0.34 -2.15 3.27
rc203 3 1060.32 3 1069.27 3 1060.32 3 1061.12 3 1068.28 0.75 -0.09 0.75 0.68 3.04
rc204 3 884.75 3 886.23 3 884.75 3 887.10 3 884.97 0.02 -0.14 0.02 -0.24 2.94
rc205 3 1259.69 3 1262.22 3 1259.69 3 1289.08 3 1249.56 -0.80 -1.00 -0.80 -3.07 4.13
rc206 3 1189.11 3 1206.09 3 1189.11 3 1200.74 3 1187.40 -0.14 -1.55 -0.14 -1.11 3.22
rc207 3 985.67 3 993.26 3 997.04 3 985.67 3 996.63 1.11 0.34 -0.04 1.11 3.36
rc208 3 833.12 3 839.71 3 833.12 3 836.93 3 833.12 0.00 -0.78 0.00 -0.45 3.17

Average -0.34 -0.99 -0.13 -1.58 2.56

BKS denotes the best known solution. For each solution method, the number of vehicles m, the total distance ϕD and the percentage
gap ∆D of the best solution obtained in 10 runs of our algorithm are presented. For our solution method average run-times are presented
in column t (in minutes).
1 Intel Xeon E5 processor with 3.30 GHz speed and 32 GB RAM.
2 Intel Core i7 processor with 3.60 GHz speed and 16 GB RAM.
3 Intel Xeon 2643 processor with 3.30 GHz speed and 4 GB RAM.
4 Intel Core i5-5300U processor with 2.30 GHz speed and 8 GB RAM.
− Solution uses different number of vehicles.

Table 5: Results for the large-size EVRP-TWPR instances
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improve the best known solution in 25 instances. Comparing our method with the ALNS
presented by Keskin and Çatay (2016) the average gap is −0.99%. Likewise, comparing our
method with the results obtained by Schiffer and Walther (2018) the average gap is 0.13%.
Finally, the average gap of our method versus the hybrid genetic algorithm, presented in
Hiermann et al. (2019), is −1.58%.

It is difficult to perform an exact comparison with respect to computational time because
of the clear difference between the characteristics of the workstations used by the other
authors (see footnotes Table 5). Also note that upper bounds on the number of vehicles
are required in our solution method and the numbers of vehicles reported in the BKS were
used. Keskin and Çatay (2016) algorithm report an average run time of 16.77 min solving
the full set of large instances. Schiffer and Walther (2018) ALNS show an average time of
4.31 minutes. HGA from Hiermann et al. (2019) reports an average computational time
of 9.96 minutes. Finally, the average time of our Hybrid-ILS is 2.56 minutes. We can see
that Hybrid-ILS has high performance compared to the state of the art methods and it is
considerably faster with a computer that seems to have less computational power.

5.4. Results on the small E-VRPTWsc instances

In this subsection the benefit of visiting customers by walking is analyzed, by comparing
the results of the EVRP-TWPR with the results of E-VRPTWsc. EVRP-TWPR best
known solutions are taken from the literature, and results for E-VRPTWsc are obtained by
executing the hybrid ILS 10 times. The results on small-size instances are shown in Table
6.

EVRP-TWPR EVRP-TWsc EVRP-TWPR EVRP-TWsc

Inst. m ϕD ϕR m st ϕD ∆D ϕR ∆R t Inst. m ϕD ϕR m st ϕD ∆D ϕR ∆R t

C101-5 2 257.75 894.39 2 2 165.73 -35.70 575.07 -35.70 0.36 R201-10 1 241.51 118.34 1 1 234.76 -2.79 115.33 -2.55 3.13
C103-5 1 175.37 608.53 1 2 100.00 -42.98 354.45 -41.75 0.48 R203-10 1 218.21 106.92 1 1 214.75 -1.59 105.23 -1.59 2.92
C206-5 1 242.56 841.68 1 2 145.10 -40.18 503.48 -40.18 0.71 RC102-10 4 423.51 165.17 4 0 423.51 0.00 165.17 0.00 0.43
C208-5 1 158.48 549.93 1 2 117.97 -25.56 456.66 -16.96 0.60 RC108-10 3 345.93 134.91 3 0 345.93 0.00 134.91 0.00 0.58
R104-5 2 136.69 66.98 2 0 136.69 0.00 66.98 0.00 0.22 RC201-10 1 412.86 161.02 1 1 410.28 -0.63 160.01 -0.63 2.83
R105-5 2 156.08 76.48 2 0 156.08 0.00 76.48 0.00 0.19 RC205-10 2 325.98 127.13 2 1 323.67 -0.71 126.23 -0.71 0.61
R202-5 1 128.78 63.10 1 1 126.40 -1.85 61.94 -1.85 0.55
R203-5 1 179.06 87.74 1 0 179.06 0.00 87.74 0.00 0.76 C103-15 3 348.46 1209.16 3 5 273.99 -21.37 950.75 -21.37 2.09

RC105-5 2 233.77 91.17 2 0 233.77 0.00 91.17 0.00 0.44 C106-15 3 275.13 954.70 3 4 229.37 -16.63 795.91 -16.63 1.09
RC108-5 2 253.93 99.03 2 0 253.93 0.00 99.03 0.00 0.35 C202-15 2 383.62 1331.16 2 5 273.69 -28.66 949.69 -28.66 2.07
RC204-5 1 176.39 68.79 1 0 176.39 0.00 68.79 0.00 0.80 C208-15 2 300.55 1042.91 2 3 225.05 -25.12 826.82 -20.72 1.81
RC208-5 1 167.98 65.51 1 0 167.98 0.00 65.51 0.00 0.52 R102-15 5 412.78 202.26 5 1 410.19 -0.63 201.75 -0.25 1.28

R105-15 4 336.15 164.71 3 1 331.60 -1.35 162.49 -1.35 1.40
C101-10 3 388.25 1347.23 3 4 250.30 -35.53 1000.77 -25.72 0.95 R202-15 2 358.00 175.42 2 1 355.23 -0.77 174.06 -0.77 2.20
C104-10 2 273.93 950.54 2 3 188.10 -31.33 681.20 -28.34 0.94 R209-15 1 313.24 153.49 1 1 312.47 -0.25 153.40 -0.06 9.87
C202-10 1 304.06 1055.09 1 3 185.15 -39.11 684.76 -35.10 2.53 RC103-15 4 397.67 155.09 4 0 397.67 0.00 155.09 0.00 1.69
C205-10 2 228.28 792.13 2 3 183.22 -19.74 662.91 -16.31 0.67 RC108-15 3 370.25 144.40 3 0 370.25 0.00 144.40 0.00 1.19
R102-10 3 249.19 122.10 3 1 248.84 -0.14 121.93 -0.14 0.77 RC202-15 2 394.39 153.81 2 4 383.70 -2.71 149.64 -2.71 1.68
R103-10 2 206.12 101.00 2 1 205.18 -0.46 100.54 -0.46 0.89 RC204-15 1 403.38 157.32 1 2 371.87 -7.81 145.93 -7.24 14.93

Average -10.66 -9.66 1.79

The number of vehicles m, number of visited RS st., the total distance performed by the vehicles ϕD, the total time spent at RS ϕR, the percentage gap ∆D for the total
distance and the percentage gap ∆R for the total recharging time are presented. Average run-times are presented in column t (in seconds).

Table 6: Results for the Small Instances for the E-VRPTWsc

Results demonstrate important reductions in terms of total charging time and total
distance by EVs when the customers are clustered. However, the random and random-
clustered instances might represent geographical scenarios where the large distances between
customers and RS are not suitable for going by walking, as it can be expected. This reinforces
the idea that our variant is focused on a city logistics framework. According to Table 6,
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allowing satellite customers can reduce the total charging time by 9.66% and the vehicle
distance by 10.66%, on average, compared to the BKS for the E-VRPTWPR.

Comparing the reductions obtained between the c sets of 5, 10 and 15 customers, a
slightly decrease of the distance and recharging time improvements can be observed. It is
obvious that the potential reduction in distance and time is correlated with the number of
visits to RSs and number of customers. The larger the ratio between number of visits to
RSs and number of customers, the bigger the reduction in vehicle distance and total energy
consumed can be achieved, with the proposed variant.

A second numerical test is done with the small size instances. The performance of the
hybrid ILS and the commercial software CPLEX on small instances of the E-VRPTWsc is
compared. The mathematical model presented in Section 3 is used in this test. In the model
the set F ′ determines the number of RS copies and, implicitly, the number of times that a
RS can be visited. On one hand, in accordance with the problem definition, one RS can be
visited several times. It can be represented by a large number of RS copies. On the other
hand, the larger the F ′ set is the more complex the graph is. For solving the instances with
CPLEX an iterative procedure is followed. First the model is solved with no RS copies. If
the problem is solved to optimality, a new iteration adding one copy of each RS is done. The
process is repeated until the optimal value of two consecutive iterations is equal, or until
the current iteration cannot be solved to optimality with a time limit of 7200 seconds. The
comparison is presented in Table 7. In column ϕR proven optimal solutions are underlined
and best solutions are in bold. Bold values in columns ∆D and ∆R show that Hybrid ILS
finds a feasible solution better than feasible solution provided by CPLEX (for non optimal
solutions).

CPLEX Hybrid ILS CPLEX Hybrid ILS

Inst. m ϕD ϕR t m ϕD ∆D ϕR ∆R t Inst. m ϕD ϕR t m ϕD ∆D ϕR ∆R t

C101-5 2 165.73 575.07 144.37 2 165.73 0.00 575.07 0.00 0.36 R201-10 1 246.67 121.16 7200 1 234.76 -4.83 115.33 -4.82 3.13
C103-5 1 100.00 354.45 220.55 1 100.00 0.00 354.45 0.00 0.48 R203-10 1 214.75 105.23 7200 1 214.75 0.00 105.23 0.00 2.92
C206-5 2 145.10 503.48 7200 1 145.10 0.00 503.48 0.00 0.71 RC102-10 4 423.51 165.17 7200 4 423.51 0.00 165.17 0.00 0.43
C208-5 2 117.97 456.66 3625 1 117.97 0.00 456.66 0.00 0.60 RC108-10 3 345.93 134.91 7200 3 345.93 0.00 134.91 0.00 0.58
R104-5 1 136.69 66.98 567.09 2 136.69 0.00 66.98 0.00 0.22 RC201-10 1 412.31 160.80 7200 1 410.28 -0.49 160.01 -0.49 2.83
R105-5 1 156.08 76.48 234.14 2 156.08 0.00 76.48 0.00 0.19 RC205-10 2 323.67 126.23 7200 2 323.67 0.00 126.23 0.00 0.61
R202-5 2 126.40 61.94 2065 1 126.40 0.00 61.94 0.00 0.55
R203-5 2 179.06 87.74 7200 1 179.06 0.00 87.74 0.00 0.76 C103-15 3 305.89 1061.44 7200 3 273.99 -10.43 950.75 -10.43 2.09

RC105-5 1 233.77 91.17 7200 2 233.77 0.00 91.17 0.00 0.44 C106-15 2 243.55 845.12 7200 3 229.37 -5.82 795.91 -5.82 1.09
RC108-5 1 253.93 99.03 6768 2 253.93 0.00 99.03 0.00 0.35 C202-15 2 295.13 1024.10 7200 2 273.69 -7.27 949.69 -7.27 2.07
RC204-5 0 176.39 68.79 7200 1 176.39 0.00 68.79 0.00 0.80 C208-15 2 253.73 883.03 7200 2 225.05 -11.30 826.82 -6.37 1.81
RC208-5 3 167.98 65.51 3443 1 167.98 0.00 65.51 0.00 0.52 R102-15 OM∗ OM∗ - 5 410.19 - 201.75 - 1.28

R105-15 3 331.60 162.49 7200 3 331.60 0.00 162.49 0.00 1.40
C101-10 2 308.57 1070.74 7200 3 250.30 -18.88 1000.77 -6.53 0.95 R202-15 OM∗ OM∗ - 2 355.23 - 174.06 - 2.20
C104-10 1 208.71 750.59 7200 2 188.10 -9.87 681.20 -9.24 0.94 R209-15 OM∗ OM∗ - 1 312.47 - 153.40 - 9.87
C202-10 2 185.15 684.76 7200 1 185.15 0.00 684.76 0.00 2.53 RC103-15 4 397.67 155.09 7200 4 397.67 0.00 155.09 0.00 1.69
C205-10 3 183.22 662.91 7200 2 183.22 0.00 662.91 0.00 0.67 RC108-15 3 370.25 144.40 7200 3 370.25 0.00 144.40 0.00 1.19
R102-10 2 248.84 121.93 237.77 3 248.84 0.00 121.93 0.00 0.77 RC202-15 2 392.37 155.15 7200 2 383.70 -2.21 149.64 -3.55 1.68
R103-10 0 206.18 101.03 7200 2 205.18 -0.48 100.54 -0.48 0.89 RC204-15 1 389.58 151.94 7200 1 371.87 -4.55 145.93 -3.95 14.93

Average -2.31 -1.79 1.79

The number of vehicles m, the total distance performed by the vehicles ϕD, the total time spent at RS ϕR, the percentage gap ∆D for the total distance and the percentage gap ∆R for
the total recharging time are presented. Average run-times are presented in column t and CPLEX execution time in column t (in seconds).

OM∗ Out of Memory.

Table 7: Results for small-size instances for the E-VRPTWsc

The results show that the Hybrid-ILS is able to find all the optimal solutions obtained
by CPLEX. Likewise, the hybrid ILS always find a solution better than the upper bound
provided by CPLEX after being executed for 2 Hours. On average it provides solutions with
a GAP of −2.31% in the total distance and a GAP of −1.79% in the total time spent at
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RS, in less than 2 seconds.

5.5. Results on the large E-VRPTWsc instances

The proposed Hybrid ILS is used to solve large-size instances. The results of the com-
putational test are shown in Table 8. The results are presented in three sets according to
the α value.

EVRP-TWPR BKS EVRP-TWsc α = 1.5 EVRP-TWsc α = 2 EVRP-TWsc α = 4

Inst. m ϕD ϕR m ϕD ∆D ϕR ∆R t m ϕD ∆D ϕR ∆R t m ϕD ∆D ϕR ∆R t

c101 12 1043.38 3537.06 12 992.71 -4.86 3365.30 -4.86 2.61 12 994.53 -4.68 3371.49 -4.68 2.00 12 1030.64 -1.22 3493.88 -1.22 1.72
c102 11 1017.70 3450.00 11 913.03 -10.29 3103.82 -10.03 2.38 11 934.65 -8.16 3174.41 -7.99 1.85 11 978.12 -3.89 3344.67 -3.05 1.90
c103 10 971.19 3292.33 10 847.33 -12.75 2880.61 -12.51 3.13 10 851.85 -12.29 2936.13 -10.82 2.90 10 933.29 -3.90 3186.07 -3.23 3.10
c104 10 884.38 2998.04 10 802.48 -9.26 2722.25 -9.20 3.75 10 820.17 -7.26 2780.38 -7.26 3.39 10 856.49 -3.15 2912.83 -2.84 3.13
c105 11 1015.79 3443.52 11 922.40 -9.19 3175.66 -7.78 3.12 11 978.55 -3.67 3317.31 -3.67 2.81 11 1007.48 -0.82 3415.35 -0.82 2.02
c106 11 1009.33 3421.61 11 904.69 -10.37 3132.49 -8.45 3.07 11 936.53 -7.21 3237.32 -5.39 3.20 11 990.76 -1.84 3358.68 -1.84 2.12
c107 10 1046.50 3547.63 10 895.37 -14.44 3112.34 -12.27 3.13 10 931.43 -11.00 3228.79 -8.99 3.13 10 1008.47 -3.63 3418.71 -3.63 2.64
c108 10 1022.48 3466.20 10 875.34 -14.39 2998.60 -13.49 3.27 10 884.49 -13.50 3048.56 -12.05 3.01 10 966.62 -5.46 3276.84 -5.46 2.73
c109 10 940.38 3187.90 10 821.30 -12.66 2819.95 -11.54 3.99 10 837.99 -10.89 2912.25 -8.65 3.70 10 906.86 -3.57 3074.24 -3.57 3.45
c201 4 629.95 1436.28 4 608.51 -3.40 1387.39 -3.40 2.39 4 610.38 -3.11 1392.90 -3.02 1.67 4 619.44 -1.67 1412.32 -1.67 1.52
c202 4 629.95 1436.28 4 606.66 -3.70 1383.17 -3.70 2.68 4 610.63 -3.07 1392.23 -3.07 1.98 4 619.00 -1.74 1411.32 -1.74 1.89
c203 4 629.95 1436.28 4 601.88 -4.46 1372.28 -4.46 3.53 4 606.59 -3.71 1383.02 -3.71 3.31 4 615.47 -2.30 1403.27 -2.30 2.44
c204 4 628.91 1440.21 3 581.98 -7.46 1332.74 -7.46 3.47 4 599.74 -4.64 1373.40 -4.64 3.94 4 614.16 -2.35 1406.43 -2.35 4.21
c205 4 629.95 1442.58 4 601.60 -4.50 1377.65 -4.50 2.61 4 603.90 -4.13 1382.93 -4.13 2.55 4 616.17 -2.19 1411.03 -2.19 2.12
c206 4 629.95 1442.58 4 597.25 -5.19 1367.70 -5.19 3.09 4 599.62 -4.81 1373.13 -4.81 3.06 4 611.54 -2.92 1403.91 -2.68 4.03
c207 4 629.95 1442.58 4 596.95 -5.24 1367.01 -5.24 3.63 4 598.90 -4.93 1371.48 -4.93 3.33 4 614.18 -2.50 1406.80 -2.48 4.29
c208 4 629.95 1442.58 4 589.38 -6.44 1349.69 -6.44 3.15 4 593.58 -5.77 1361.21 -5.64 3.40 4 611.93 -2.86 1401.36 -2.86 3.03
r101 18 1606.98 771.35 18 1579.05 -1.74 761.75 -1.24 3.41 18 1600.74 -0.39 768.36 -0.39 3.17 18 1605.27 -0.11 770.53 -0.11 2.86
r102 15 1461.23 701.39 15 1400.79 -4.14 673.85 -3.93 3.65 15 1472.88 0.80 709.28 1.13 3.39 15 1457.14 -0.28 699.63 -0.25 3.04
r103 13 1212.37 581.94 13 1166.23 -3.81 563.98 -3.09 3.81 13 1197.93 -1.19 575.01 -1.19 3.56 13 1210.53 -0.15 581.06 -0.15 3.29
r104 11 1051.41 473.14 11 1014.91 -3.47 459.17 -2.95 3.91 11 1028.61 -2.17 463.80 -1.97 3.73 11 1050.22 -0.11 472.60 -0.11 3.75
r105 14 1347.80 646.94 14 1304.98 -3.18 626.39 -3.18 3.66 14 1311.36 -2.70 631.14 -2.44 3.56 14 1341.09 -0.50 643.72 -0.50 3.25
r106 13 1256.19 602.97 13 1204.79 -4.09 579.67 -3.87 3.83 13 1224.60 -2.51 589.10 -2.30 3.61 13 1254.83 -0.11 602.32 -0.11 3.43
r107 12 1108.47 498.81 11 1066.91 -3.75 480.31 -3.71 3.37 11 1088.56 -1.80 493.82 -1.00 3.25 11 1101.31 -0.65 495.59 -0.65 3.04
r108 11 1020.52 479.64 10 968.39 -5.11 457.57 -4.60 3.65 10 995.50 -2.45 470.33 -1.94 3.69 11 1019.03 -0.15 478.95 -0.15 3.62
r109 12 1185.77 545.46 12 1131.62 -4.57 523.76 -3.98 4.08 12 1147.24 -3.25 530.34 -2.77 3.68 12 1171.93 -1.17 539.09 -1.17 3.54
r110 11 1070.99 481.95 11 1031.28 -3.71 465.82 -3.35 4.28 11 1040.83 -2.82 469.68 -2.55 4.09 11 1067.26 -0.35 480.27 -0.35 3.95
r111 11 1072.46 493.33 11 1034.68 -3.52 475.95 -3.52 3.58 11 1046.19 -2.45 481.89 -2.32 4.13 11 1065.85 -0.62 490.29 -0.62 3.96
r112 11 1001.79 460.82 10 969.09 -3.26 446.15 -3.18 4.46 10 978.38 -2.34 450.06 -2.34 3.73 11 998.42 -0.34 459.27 -0.34 3.19
r201 3 1255.81 200.93 3 1249.36 -0.51 199.90 -0.51 3.77 3 1250.29 -0.44 200.05 -0.44 3.54 3 1251.29 -0.36 200.21 -0.36 3.12
r202 3 1051.46 136.69 3 1040.71 -1.02 135.29 -1.02 2.94 3 1043.66 -0.74 135.68 -0.74 2.84 3 1047.45 -0.38 136.17 -0.38 2.52
r203 3 895.54 143.29 3 885.79 -1.09 141.73 -1.09 3.56 3 884.99 -1.18 141.60 -1.18 3.49 3 893.19 -0.26 142.91 -0.26 2.83
r204 2 780.91 93.71 2 767.87 -1.67 92.18 -1.63 5.06 2 768.80 -1.55 92.26 -1.55 4.94 2 781.22 0.04 93.75 0.04 4.98
r205 3 987.22 148.08 3 973.71 -1.37 146.06 -1.37 3.47 3 978.27 -0.91 146.74 -0.91 2.61 3 986.39 -0.08 147.96 -0.08 2.71
r206 3 922.70 156.86 3 913.82 -0.96 155.35 -0.96 3.59 3 930.09 0.80 158.11 0.80 3.29 3 929.47 0.73 158.01 0.73 3.14
r207 2 843.20 92.75 2 839.48 -0.44 92.34 -0.44 4.50 2 843.00 -0.02 92.73 -0.02 4.57 2 844.49 0.15 92.89 0.15 3.97
r208 2 736.12 103.06 2 726.83 -1.26 101.76 -1.26 4.55 2 728.57 -1.03 102.00 -1.03 4.14 2 733.36 -0.37 102.67 -0.37 3.31
r209 3 863.36 138.14 3 858.36 -0.58 137.39 -0.54 3.20 3 863.63 0.03 138.18 0.03 3.15 3 865.07 0.20 138.41 0.20 3.03
r210 3 843.36 134.94 3 832.39 -1.30 133.18 -1.30 3.28 3 837.98 -0.64 134.08 -0.64 2.92 3 842.81 -0.07 134.85 -0.07 3.00
r211 2 826.88 90.96 2 824.23 -0.32 90.67 -0.32 4.91 2 822.03 -0.59 90.42 -0.59 4.65 2 838.67 1.43 92.25 1.43 3.97
rc101 15 1648.99 626.62 15 1646.23 -0.17 625.57 -0.17 3.34 15 1646.24 -0.17 625.69 -0.15 2.93 15 1658.89 0.60 630.38 0.60 2.64
rc102 14 1510.16 573.86 14 1496.72 -0.89 568.75 -0.89 3.13 14 1507.28 -0.19 572.77 -0.19 2.67 14 1509.09 -0.07 573.46 -0.07 2.46
rc103 12 1346.83 511.80 12 1321.30 -1.90 502.10 -1.90 3.24 12 1348.50 0.12 512.55 0.15 2.91 12 1345.21 -0.12 511.18 -0.12 2.74
rc104 11 1175.06 446.52 11 1150.18 -2.12 439.90 -1.48 3.00 11 1173.11 -0.17 445.78 -0.17 3.51 11 1173.46 -0.14 445.92 -0.14 2.70
rc105 14 1446.30 549.60 13 1424.16 -1.53 541.18 -1.53 3.02 14 1440.89 -0.37 547.54 -0.37 2.69 14 1446.30 0.00 549.60 0.00 2.66
rc106 13 1383.14 526.66 13 1377.88 -0.38 523.60 -0.58 3.15 13 1382.21 -0.07 525.24 -0.27 2.86 13 1387.60 0.32 527.29 0.12 2.68
rc107 12 1244.83 473.03 12 1237.82 -0.56 470.37 -0.56 3.09 12 1243.08 -0.14 472.37 -0.14 2.89 12 1240.71 -0.33 471.47 -0.33 2.83
rc108 11 1154.14 438.57 11 1150.76 -0.29 437.29 -0.29 3.15 11 1154.11 0.00 438.56 0.00 2.58 11 1158.81 0.40 440.35 0.40 2.68
rc201 4 1443.07 202.03 4 1431.83 -0.78 200.46 -0.78 2.92 4 1440.82 -0.16 201.72 -0.16 2.69 4 1441.75 -0.09 201.85 -0.09 2.38
rc202 3 1403.32 154.37 3 1392.35 -0.78 153.16 -0.78 3.91 3 1411.69 0.60 155.29 0.60 3.80 3 1405.73 0.17 154.63 0.17 3.63
rc203 3 1060.32 148.44 3 1062.11 0.17 148.70 0.17 3.61 3 1051.91 -0.79 147.27 -0.79 3.60 3 1067.60 0.69 149.46 0.69 3.74
rc204 3 884.75 168.10 3 872.88 -1.34 165.85 -1.34 3.36 3 874.10 -1.20 166.08 -1.20 3.39 3 890.17 0.61 169.13 0.61 2.57
rc205 3 1249.56 187.43 3 1222.27 -2.18 183.34 -2.18 4.82 3 1246.91 -0.21 187.04 -0.21 4.36 3 1244.23 -0.43 186.64 -0.43 4.49
rc206 3 1187.40 154.36 3 1173.62 -1.16 152.57 -1.16 3.73 3 1199.77 1.04 155.97 1.04 3.75 3 1198.47 0.93 155.80 0.93 3.48
rc207 3 985.67 137.99 3 971.08 -1.48 135.95 -1.48 3.74 3 987.01 0.14 138.87 0.63 3.85 3 988.50 0.29 138.39 0.29 3.56
rc208 3 833.12 149.96 3 825.31 -0.94 148.56 -0.94 4.32 3 836.23 0.37 150.52 0.37 3.71 3 838.20 0.61 150.88 0.61 3.27

Average -3.75 -3.53 3.52 -2.56 -2.33 3.31 -0.82 -0.79 3.08

m number of vehicles, total distance performed by the vehicles ϕD, total time spent at RS ϕR, gap percentage ∆D for total distance, gap percentage ∆R for
total recharging time. Average run-times are presented in column t (in minutes).

Table 8: Results for large-size instances for the E-VRPTWsc

Results demonstrate that allowing visits by walking could reduce the total time at RSs
and the total distance of the EVs in the three proposed scenarios compared with the BKS
for the E-VRPTWPR (note that the BKS are updated according to the results obtained in
Section 5.3).
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Doing an analysis by subset of instances, the faster the alternative mode is (smaller
values of α), the larger is the reduction obtained in total distance and total time at RS.
Strictly speaking, when α is 1.5 it is possible to reduce by 3.53% total time spent at RS
and by 3.75% the total distance of EVs. For α equal to 2 total time spent at RS is reduced
2.33% and the total distance 2.56%. And a reduction of 0.79% on the total time spent at
RS and of 0.82% on the total distance is achieved when α is 4. According to this, it is clear
that a vehicle that moves faster allows you to get better results, as would be expected.

In Appendix B one table for each set of instances is presented. In each table, number
of visits to RSs, number of satellite customers, recharging times and walking times are
presented for the solutions presented in Table 8. Likewise, column ϕR − ϕCT shows the
amount of extra time spent at the RS due to walking. If we look at instance c107 in Table
B.9, we can find the largest value of additional time due to visiting a satellite customer.
Comparing the 77.03 units of time with the total recharge time, this represents 2.3% of the
recharging time. When the difference is equal to zero, it means that walking time is a hidden
time that does not affect the duration of the route. Therefore, it is verified that the variant
is taking advantage of the dead times caused by the recharging activity.

Looking for the type of geographical distribution, the c instances are where greater
reductions in time at RSs and distance can be obtained. It follows the behavior observed in
the small instances and shows the benefit of allowing satellite customers when using EVs in
clustered scenarios or in a city logistics context.

On average, the proposed method obtains high quality solutions in 3.30 minutes. The
results show that when α is 1.5 the algorithm takes longer than when α is 4. This happens
because with better walking speeds the number of potential customers that can be visited
by walking increases. Finally, the Hybrid-ILS takes longer to solve E-VRPTWsc instances
compared to the results reported for the EVRP-TWPR. This is caused by the walking
evaluations.

6. Conclusions and perspectives

In this paper the Electric Vehicle Routing Problem with Time Windows and Satellite
Customers is introduced as a novel variation of the E-VRPTW. The objective function is
the minimization of the time spent at recharging stations. This also allows a reduction in
the total vehicle distance. A mathematical model is presented and a solution method based
on an ILS structure is designed. A generalized cost function, forward functions, backward
functions and concatenation operators are proposed to evaluate most of the local search
movements in constant time.

Computational experiments show that, allowing the visits to the customer by an alter-
native mode enable us to: 1) reduce total recharging time, which means a reduction in
total vehicle distance; and 2) avoid part of the idle times during the intra-route recharging
activities. The efficiency of the algorithm is recognized by the tests on a special case, E-
VRPTWPR where new BKS solutions are found and the average computational time is less
than the time reported for State-of-the-art algorithms.

25



In the current version of the problem, only one customer can be visited during the
recharging of the EV. One of the research perspectives is to explore the possibility of vis-
iting more than one customer which will bring the concept of secondary routes. Likewise,
considering different charging fees for RS and depot are part of our research perspectives.
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Lourenço, H.R., Martin, O.C., Stützle, T., 2003. Iterated local search, in: Handbook of metaheuristics.
Springer, pp. 320–353.

Masmoudi, M.A., Hosny, M., Demir, E., Genikomsakis, K.N., Cheikhrouhou, N., 2018. The dial-a-ride
problem with electric vehicles and battery swapping stations. Transportation research part E: logistics
and transportation review 118, 392–420.

26
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Appendix A. Backward functions

Backward functions bx with x ∈ {cost,rw,min,max,sl,rt,add}, b̃maxi , and b̃mini are derived
from the forward penalty functions. The new functions and the adapted functions to evaluate
a route backward along arc (i, j) from vertex j to vertex i are stated below:

brwi =

{
min{H,max{brwj − s′j, 0}+ hij} if j ∈ F ′

min{H, brwj + hij} otherwise
(A.1)

bcosti =

{
bcostj + hij + max{0, s′j − brwj } if j ∈ F ′

bcostj + hij otherwise
(A.2)

bmini =

{
min{li,min{l′j, b̃minj } − si − tij} − baddij if j ∈ F ′

min{li, b̃minj − si − tij} − baddij otherwise
(A.3)

bslij =

{
max{0,min{l′j, b̃mini } − si − tij − li} if j ∈ F ′

max{0, b̃mini − si − tij − li} otherwise
(A.4)

bmaxi =

{
min{li,min{l′j, b̃minj } −max{brtj − s′j −max{b̃minj − l′j, 0}, 0} − si − tij} if j ∈ F ′

min{li, b̃maxi − si − tij} otherwise

(A.5)

brti =

{
min{H,max{brtj − s′j − bslij −max{b̃minj − l′j, 0}, 0}+ hij} if j ∈ F ′

min{H,max{brtj −min{bslij, b̃minj − b̃maxj }, 0}+ hij} otherwise
(A.6)

baddij =

{
max{0,max{brtj − s′j − bslij −max{b̃minj − l′j, 0}, 0}+ hij −H} if j ∈ F ′

max{0,max{brtj −min{bslij, b̃minj − b̃maxj }, 0}+ hij −H} otherwise
(A.7)

For the following functions (A.8 - A.11) if i ∈ F ′, ei must be replaced with e′i.

b̃mini = max{bmini , bmaxi , ei} (A.8)

b̃maxi = max{ei,max{bmini , bmaxi , ei} −max{bmini − bmaxi }} (A.9)

←−−
TW (πi) =

∑
v∈πi

max{ev −max{bmaxv , bminv }, 0} (A.10)

←−
BT (πi) =

∑
v∈πi

max{bmaxv − bminv , 0} (A.11)
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Appendix B. Detailed information for large-size E-VRPTWsc instances

Inst. m ϕD ϕR t nRS St. ϕCT ϕWT ϕR − ϕCT
c101 12 992.71 3365.30 2.61 15 13 3365.29 1774.55 0.01
c102 11 913.03 3103.82 2.38 15 14 3095.16 1966.40 8.66
c103 10 847.33 2880.61 3.13 15 14 2872.43 2017.53 8.18
c104 10 802.48 2722.25 3.75 15 15 2720.42 2462.99 1.83
c105 11 922.40 3175.66 3.12 16 15 3126.93 2173.56 48.73
c106 11 904.69 3132.49 3.07 15 15 3066.89 2219.77 65.60
c107 10 895.37 3112.34 3.13 15 14 3035.31 2104.04 77.03
c108 10 875.34 2998.60 3.27 16 15 2967.39 2205.39 31.21
c109 10 821.30 2819.95 3.99 15 14 2784.20 2225.80 35.75
c201 4 608.51 1387.39 2.39 9 9 1387.39 1108.48 0.00
c202 4 606.66 1383.17 2.68 10 10 1383.17 1224.02 0.00
c203 4 601.88 1372.28 3.53 9 8 1372.28 1101.43 0.00
c204 3 581.98 1332.74 3.47 9 9 1332.74 1234.60 0.00
c205 4 601.60 1377.65 2.61 8 8 1377.65 1067.97 0.00
c206 4 597.25 1367.70 3.09 9 9 1367.70 1222.04 0.00
c207 4 596.95 1367.01 3.63 8 8 1367.01 1181.24 0.00
c208 4 589.38 1349.69 3.15 8 8 1349.69 1196.20 0.00
r101 18 1579.05 761.75 3.41 22 10 757.94 206.72 3.81
r102 15 1400.79 673.85 3.65 20 11 672.38 233.36 1.47
r103 13 1166.23 563.98 3.81 16 9 559.79 196.49 4.19
r104 11 1014.91 459.17 3.91 15 12 456.71 257.40 2.46
r105 14 1304.98 626.39 3.66 18 12 626.39 245.88 0.00
r106 13 1204.79 579.67 3.83 16 11 578.30 240.89 1.37
r107 11 1066.91 480.31 3.37 16 10 480.11 219.25 0.20
r108 10 968.39 457.57 3.65 16 11 455.14 228.99 2.42
r109 12 1131.62 523.76 4.08 16 11 520.55 223.50 3.22
r110 11 1031.28 465.82 4.28 13 8 464.08 169.97 1.75
r111 11 1034.68 475.95 3.58 15 8 475.95 169.81 0.00
r112 10 969.09 446.15 4.46 13 9 445.78 183.04 0.37
r201 3 1249.36 199.90 3.77 7 5 199.90 97.36 0.00
r202 3 1040.71 135.29 2.94 5 4 135.29 87.90 0.00
r203 3 885.79 141.73 3.56 6 5 141.73 111.13 0.00
r204 2 767.87 92.18 5.06 5 4 92.14 84.70 0.04
r205 3 973.71 146.06 3.47 5 4 146.06 90.91 0.00
r206 3 913.82 155.35 3.59 7 6 155.35 124.55 0.00
r207 2 839.48 92.34 4.50 4 4 92.34 80.03 0.00
r208 2 726.83 101.76 4.55 5 4 101.76 95.29 0.00
r209 3 858.36 137.39 3.20 5 4 137.34 81.49 0.05
r210 3 832.39 133.18 3.28 7 5 133.18 107.29 0.00
r211 2 824.23 90.67 4.91 4 4 90.67 76.63 0.00
rc101 15 1646.23 625.57 3.34 21 5 625.57 97.11 0.00
rc102 14 1496.72 568.75 3.13 18 6 568.75 131.48 0.00
rc103 12 1321.30 502.10 3.24 15 7 502.09 153.78 0.00
rc104 11 1150.18 439.90 3.00 12 7 437.07 174.58 2.83
rc105 13 1424.16 541.18 3.02 17 4 541.18 81.11 0.00
rc106 13 1377.88 523.60 3.15 14 3 523.59 62.19 0.00
rc107 12 1237.82 470.37 3.09 14 4 470.37 88.55 0.00
rc108 11 1150.76 437.29 3.15 15 4 437.29 83.82 0.00
rc201 4 1431.83 200.46 2.92 7 4 200.46 101.82 0.00
rc202 3 1392.35 153.16 3.91 5 3 153.16 66.67 0.00
rc203 3 1062.11 148.70 3.61 6 4 148.70 95.16 0.00
rc204 3 872.88 165.85 3.36 5 4 165.85 98.35 0.00
rc205 3 1222.27 183.34 4.82 9 4 183.34 95.45 0.00
rc206 3 1173.62 152.57 3.73 5 3 152.57 75.73 0.00
rc207 3 971.08 135.95 3.74 5 3 135.95 79.70 0.00
rc208 3 825.31 148.56 4.32 7 5 148.55 103.84 0.00
Average 3.52 915.80 601.57 5.38

m number of vehicles, total distance performed by the vehicles ϕD, total time spent at RS ϕR,

number of visits to RS nRS, number of satellite customers St., charging time ϕCT , and ϕWT total

walking time are presented. Average run-times are presented in column t (in minutes). Finally,

column ϕR − ϕCT shows the amount of extra time spent at the RS due to walking

Table B.9: Detailed results for the large-size E-VRPTWsc instances with α = 1.5
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Inst. m ϕD ϕR t nRS St. ϕCT ϕWT ϕR − ϕCT
c101 12 994.53 3371.49 2.00 15 13 3371.45 1930.15 0.04
c102 11 934.65 3174.41 1.85 12 11 3168.48 1591.99 5.93
c103 10 851.85 2936.13 2.90 13 12 2887.77 1817.09 48.36
c104 10 820.17 2780.38 3.39 14 13 2780.38 1940.96 0.00
c105 11 978.55 3317.31 2.81 18 13 3317.27 1795.43 0.04
c106 11 936.53 3237.32 3.20 16 13 3174.82 2025.13 62.50
c107 10 931.43 3228.79 3.13 14 13 3157.55 2045.75 71.24
c108 10 884.49 3048.56 3.01 10 8 2998.41 1415.12 50.15
c109 10 837.99 2912.25 3.70 14 12 2840.79 1858.28 71.46
c201 4 610.38 1392.90 1.67 7 7 1391.66 881.30 1.24
c202 4 610.63 1392.23 1.98 7 7 1392.23 907.55 0.00
c203 4 606.59 1383.02 3.31 9 8 1383.03 1226.58 0.00
c204 4 599.74 1373.40 3.94 9 9 1373.40 1260.51 0.00
c205 4 603.90 1382.93 2.55 8 8 1382.93 1209.07 0.00
c206 4 599.62 1373.13 3.06 8 8 1373.13 1249.95 0.00
c207 4 598.90 1371.48 3.33 8 8 1371.48 1174.30 0.00
c208 4 593.58 1361.21 3.40 8 8 1359.30 1228.58 1.91
r101 18 1600.74 768.36 3.17 22 4 768.36 79.57 0.00
r102 15 1472.88 709.28 3.39 22 8 706.98 173.86 2.30
r103 13 1197.93 575.01 3.56 18 6 575.01 128.45 0.00
r104 11 1028.61 463.80 3.73 14 9 462.87 200.14 0.93
r105 14 1311.36 631.14 3.56 20 12 629.45 254.50 1.68
r106 13 1224.60 589.10 3.61 17 9 587.81 203.34 1.29
r107 11 1088.56 493.82 3.25 14 10 489.85 221.40 3.97
r108 10 995.50 470.33 3.69 15 9 467.88 196.74 2.45
r109 12 1147.24 530.34 3.68 13 8 527.73 169.17 2.60
r110 11 1040.83 469.68 4.09 13 8 468.37 172.59 1.30
r111 11 1046.19 481.89 4.13 14 7 481.25 134.22 0.65
r112 10 978.38 450.06 3.73 13 7 450.06 152.11 0.00
r201 3 1250.29 200.05 3.54 7 4 200.05 80.52 0.00
r202 3 1043.66 135.68 2.84 5 5 135.68 98.19 0.00
r203 3 884.99 141.60 3.49 7 4 141.60 91.48 0.00
r204 2 768.80 92.26 4.94 3 3 92.26 71.43 0.00
r205 3 978.27 146.74 2.61 4 4 146.74 80.93 0.00
r206 3 930.09 158.11 3.29 6 4 158.11 90.62 0.00
r207 2 843.00 92.73 4.57 3 2 92.73 36.94 0.00
r208 2 728.57 102.00 4.14 4 4 102.00 69.20 0.00
r209 3 863.63 138.18 3.15 4 4 138.18 82.41 0.00
r210 3 837.98 134.08 2.92 4 4 134.08 80.04 0.00
r211 2 822.03 90.42 4.65 3 2 90.42 38.31 0.00
rc101 15 1646.24 625.69 2.93 21 5 625.57 104.82 0.11
rc102 14 1507.28 572.77 2.67 19 2 572.77 38.42 0.00
rc103 12 1348.50 512.55 2.91 16 4 512.43 97.24 0.12
rc104 11 1173.11 445.78 3.51 13 7 445.78 153.27 0.00
rc105 14 1440.89 547.54 2.69 14 2 547.54 40.00 0.00
rc106 13 1382.21 525.24 2.86 16 2 525.24 46.42 0.00
rc107 12 1243.08 472.37 2.89 12 3 472.37 62.00 0.00
rc108 11 1154.11 438.56 2.58 12 2 438.56 40.00 0.00
rc201 4 1440.82 201.72 2.69 7 3 201.71 71.46 0.00
rc202 3 1411.69 155.29 3.80 4 1 155.29 26.49 0.00
rc203 3 1051.91 147.27 3.60 6 2 147.27 53.46 0.00
rc204 3 874.10 166.08 3.39 7 4 166.08 102.31 0.00
rc205 3 1246.91 187.04 4.36 9 4 187.04 84.97 0.00
rc206 3 1199.77 155.97 3.75 7 2 155.97 44.97 0.00
rc207 3 987.01 138.87 3.85 5 4 138.18 86.82 0.68
rc208 3 836.23 150.52 3.71 6 5 150.52 115.82 0.00
Average 3.31 932.39 529.15 5.91

m number of vehicles, total distance performed by the vehicles ϕD, total time spent at RS ϕR,

number of visits to RS nRS, number of satellite customers St., charging time ϕCT , and ϕWT total

walking time are presented. Average run-times are presented in column t (in minutes). Finally,

column ϕR − ϕCT shows the amount of extra time spent at the RS due to walking

Table B.10: Detailed results for the large-size E-VRPTWsc instances with α = 2
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Inst. m ϕD ϕR t nRS St. ϕCT ϕWT ϕR − ϕCT
c101 12 1030.64 3493.88 1.72 13 7 3493.87 1294.48 0.01
c102 11 978.12 3344.67 1.90 11 6 3315.84 1163.09 28.83
c103 10 933.29 3186.07 3.10 12 8 3163.87 1328.28 22.20
c104 10 856.49 2912.83 3.13 11 8 2903.51 1539.82 9.32
c105 11 1007.48 3415.35 2.02 12 5 3415.36 712.15 0.00
c106 11 990.76 3358.68 2.12 9 6 3358.68 987.74 0.00
c107 10 1008.47 3418.71 2.64 14 9 3418.71 1479.80 0.00
c108 10 966.62 3276.84 2.73 11 7 3276.84 1215.11 0.00
c109 10 906.86 3074.24 3.45 11 5 3074.25 901.49 0.00
c201 4 619.44 1412.32 1.52 5 4 1412.31 547.74 0.01
c202 4 619.00 1411.32 1.89 4 4 1411.32 628.05 0.00
c203 4 615.47 1403.27 2.44 5 5 1403.27 724.76 0.00
c204 4 614.16 1406.43 4.21 7 7 1406.43 1051.85 0.00
c205 4 616.17 1411.03 2.12 6 6 1411.03 866.47 0.00
c206 4 611.54 1403.91 4.03 7 7 1400.44 1211.93 3.47
c207 4 614.18 1406.80 4.29 9 7 1406.47 954.60 0.33
c208 4 611.93 1401.36 3.03 7 7 1401.32 1187.68 0.04
r101 18 1605.27 770.53 2.86 22 2 770.53 53.89 0.00
r102 15 1457.14 699.63 3.04 22 2 699.43 42.63 0.20
r103 13 1210.53 581.06 3.29 20 1 581.05 21.31 0.00
r104 11 1050.22 472.60 3.75 11 2 472.60 42.63 0.00
r105 14 1341.09 643.72 3.25 20 3 643.72 77.09 0.00
r106 13 1254.83 602.32 3.43 18 5 602.32 119.72 0.00
r107 11 1101.31 495.59 3.04 17 5 495.59 124.41 0.00
r108 11 1019.03 478.95 3.62 15 3 478.94 70.52 0.00
r109 12 1171.93 539.09 3.54 16 3 539.09 68.63 0.00
r110 11 1067.26 480.27 3.95 16 2 480.27 42.63 0.00
r111 11 1065.85 490.29 3.96 14 4 490.29 96.52 0.00
r112 11 998.42 459.27 3.19 13 4 459.27 96.52 0.00
r201 3 1251.29 200.21 3.12 7 3 200.21 77.09 0.00
r202 3 1047.45 136.17 2.52 4 2 136.17 55.78 0.00
r203 3 893.19 142.91 2.83 4 3 142.91 77.09 0.00
r204 2 781.22 93.75 4.98 3 2 93.75 42.63 0.00
r205 3 986.39 147.96 2.71 5 2 147.96 49.20 0.00
r206 3 929.47 158.01 3.14 5 2 158.01 47.31 0.00
r207 2 844.49 92.89 3.97 3 1 92.89 27.89 0.00
r208 2 733.36 102.67 3.31 4 2 102.67 49.20 0.00
r209 3 865.07 138.41 3.03 4 3 138.41 77.09 0.00
r210 3 842.81 134.85 3.00 3 2 134.85 42.63 0.00
r211 2 838.67 92.25 3.97 3 2 92.25 49.20 0.00
rc101 15 1658.89 630.38 2.64 21 1 630.38 18.00 0.00
rc102 14 1509.09 573.46 2.46 19 1 573.45 18.00 0.00
rc103 12 1345.21 511.18 2.74 17 1 511.18 18.00 0.00
rc104 11 1173.46 445.92 2.70 13 1 445.91 18.00 0.00
rc105 14 1446.30 549.60 2.66 15 1 549.59 18.00 0.00
rc106 13 1387.60 527.29 2.68 15 1 527.29 18.00 0.00
rc107 12 1240.71 471.47 2.83 14 0 471.47 0.00 0.00
rc108 11 1158.81 440.35 2.68 13 0 440.35 0.00 0.00
rc201 4 1441.75 201.85 2.38 6 2 201.85 52.00 0.00
rc202 3 1405.73 154.63 3.63 5 0 154.63 0.00 0.00
rc203 3 1067.60 149.46 3.74 6 1 149.46 26.00 0.00
rc204 3 890.17 169.13 2.57 6 2 169.13 52.00 0.00
rc205 3 1244.23 186.64 4.49 9 1 186.63 26.00 0.00
rc206 3 1198.47 155.80 3.48 6 1 155.80 26.00 0.00
rc207 3 988.50 138.39 3.56 5 1 138.39 26.00 0.00
rc208 3 838.20 150.88 3.27 4 1 150.88 26.00 0.00
Average 3.08 969.34 349.80 1.15

m number of vehicles, total distance performed by the vehicles ϕD, total time spent at RS ϕR,

number of visits to RS nRS, number of satellite customers St., charging time ϕCT , and ϕWT total

walking time are presented. Average run-times are presented in column t (in minutes). Finally,

column ϕR − ϕCT shows the amount of extra time spent at the RS due to walking

Table B.11: Detailed results for the large-size E-VRPTWsc instances with α = 4
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