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A parametric lifetime model for a
multicomponents system with spatial
interactions

F. Corseta, M. Fouladiradb∗, C. Paroissinc, E. Remyd

Summary: In this paper, we consider a system made of n components displayed on a structure (e.g. a

steel plate). We define a parametric model for the hazard function which includes covariates and spatial

interaction between components. The state (non-failed or failed) of each component is observed at some

inspection times. From these data, we consider the problem of model parameter estimation. To achieve this,

we suggest to use the SEM algorithm based on a pseudo-likelihood function. A definition for the time-to-

failure of the system is given, generalizing the classical cases. A study based on numerical simulations is

provided to illustrate the proposed approach.

Keywords: Parameter estimation, Pseudo-likelihood, SEM algorithm, Spatial physical interaction

1. INTRODUCTION

The failure of industrial systems can cause irreversible damages, economic and human1

losses, and also bring an unrecoverable impact on the environment. In order to avoid such2

undesirable events, the system lifetime has to be studied, which implies to point out the3

interactions between the components constituting the system and to propose a tractable4
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model to describe and predict the system failure. A suitable model must be complex enough5

to take into account most of the different features of the system and simple enough to6

be used by practitioners in the field. One of the issues in system lifetime prediction is to7

properly take into account the system behaviour which means on the one hand the impact8

of the environmental conditions, and on the other hand the spatial interaction between the9

components.10

For complex equipment, it is convenient to define the system state by a binary random11

variable. As long as the system is operational, its health indicator is equal to one and as soon12

as a failure occurs the health indicator is equal to zero. This model can ignore the complexity13

of the system and makes some potentially unrealistic, but necessary, simplifications on the14

system lifetime distribution. However, in our context, it allows to take advantage of existing15

results on binary data analysis with covariates and spatio-temporal models. Indeed, during16

the last decades, a great attention has been given to this subject. In Diggle et al. [9] and17

Gumpertz et al. [14], a marginal logistic regression model is used to characterize the impact18

of covariates on binary data. These developments are based on the notion of neighbourhood19

which is defined as a group of components related due to their spatial interaction. After the20

definition of what is called a neighbourhood, Besag [2, 3] proposed an auto-logistic model for21

spatial binary data, assuming a simple dependence on surrounding neighbours which may22

interact with each other. The interest of this model is largely pointed out in the literature for23

instance refer to [1, 12, 16, 20, 21, 22, 25]. They all brought out its simplicity and tractability24

in presence of data. This model is extended by Gumpertz et al. and Huffer et al. [13, 17] in25

order to integrate covariates. Afterwards, Zhu et al. [26] give another extension of this model26

in order to take into account the temporal dependency. Later Caragea and Kaiser [5] point out27

that these models are not suitable in the case of a neighbourhood with a large number of failed28

components and propose a centered model in which the failure probability of each component29

increases or decreases around the mean behaviour of the model describing the whole system.30
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Each of these models is used in the framework of parameter inference. The natural choice31

of estimation technique for these models is the maximum likelihood method. However, for32

the auto-logistic model with spatially correlated variables, the hypothesis of independence of33

the observations is no longer valid. To overcome this difficulty, Besag [4] proposes to use the34

pseudo-likelihood which mimics the likelihood function under the hypothesis of independence35

of the observations. Its maximization is in general easy to implement and results have good36

statistical properties when the considered neighbourhood is not very large [24, 11]. A Monte37

Carlo maximum likelihood method is proposed by Geyer and Thompson [11]. Alternatively,38

Zhu et al. [26] use maximum pseudo-likelihood for parameter estimation and develop a39

Markov Chain Monte Carlo (MCMC) algorithm for predicting future observations. Li [18]40

studies the existence of the joint distribution for a two-step centered auto-logistic causal41

model by considering the process as a Markov chain Markov field [15]. However, since the42

joint distribution is untractable, he proposes the expectation-maximization pseudo-likelihood43

estimation method and studies its performance.44

In this paper, the model is inspired by a real industrial system installed in electric power45

plants of EDF, the main French electric utility company. This system may be assimilated to46

a large plate vertically maintained by screws regularly distributed all over the surface of the47

plate. The failure of one screw leads to an increase of mechanical stress on the other screws48

surrounding the one that has failed, consequently increasing their own failure probability.49

When a fixed number of failed screws is reached, the system is considered to be failed in turn50

(the plate is no more sufficiently maintained and may fall down). In addition to this spatial51

physical interaction between the screws, environmental conditions and material properties52

may also impact the reliability of the screws, and thus the lifetime of the whole system.53

Since the state (failed/non-failed) of the components is known thanks to inspections, the54

available data is binary but censored by interval and the main objective is to model both the55

impact of the covariates and the interactive neighbourhood on the components’ lifetime. In56
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reliability analysis, the impact of environmental conditions on the systems lifetime is often57

modelled via covariates through proportional hazards or additive hazards models [7, 19, 23].58

Therefore, in difference with the models studied in the literature and previously presented59

in this section, we have here the constraint of using the hazard rate and we shall model the60

impact of the spatial interaction on the failure rate of components. In this framework, we61

integrate the censored data in the statistical inference and suggest a parameter estimation62

procedure. Similarly to results previously exposed, a pseudo-maximum likelihood in the63

framework of Monte Carlo simulations is proposed.64

The remainder of this paper is organized as follows. In Section 2, the problem statement65

and the survival model are described. Section 3 is devoted to parameter estimation and66

statistical studies. The system failure and time-to-failure distribution are detailed in Section67

4. In Section 5, a numerical example is considered to illustrate the proposed methodology.68

The paper ends with a conclusion and some prospects.69

2. MODEL DESCRIPTION

We consider a system made of n components displayed on a structure, say, for instance, a70

set of screws on a steel plate or on a steel cylinder, see Figure 1 giving an illustration of71

such a system. We denote by V = {1, . . . , n} the set of all components. Let T1, . . . , Tn be the72

components’ lifetimes. From these lifetimes, we can construct n binary stochastic processes73

which switch from 0 to 1 after failure of the corresponding component: for any i ∈ V and for74

any t ≥ 0, Yi(t) = 1Ti≤t. The failure of a component may lead to a higher mechanical stress75

on the components in its neighbourhood. Hence, we aim at determining if each failure of a76

component has an impact on the neighbouring components. This impact is assumed to lead77

to an increase of the hazard function of these components. Let Bi be the neighbourhood78

of the i-th component. We assume that symmetry about the neighbourhood holds, in the79
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sense that if i1 ∈ Bi2 then i2 ∈ Bi1 . This combination of components and neighbours can80

be viewed as a non-oriented graph where vertices are the components and where the edge81

between vertices i1 and i2 exists if i1 ∈ Bi2 .82

As the main example all along this paper, we assume that n is a square number and that83

the components are located on a regular
√
n×
√
n grid (of course, more complex topologies84

could be considered). For such an example, natural definitions of neighbourhood are the85

following ones. The first one is the case where the neighbourhood can be defined as the four86

cardinal points (up to the edge effect): in such a case, a component will have between 2 and 487

neighbours (see Figure 1 on the left). A second example is the case where the neighbourhood88

can be defined as the eight cardinal points (also up to the edge effect): in such a case, a89

component will have between 3 and 8 neighbours (see Figure 1 on the right). Of course,90

other neighbourhoods could be defined and also other system structures could be considered91

(e.g. a cylinder). Note that sphericalness of the neighbourhood is not mandatory and, for92

physical reasons, such assumption can be removed.93

[Figure 1 about here.]94

The lifetime distributions of the components will be defined through their hazard functions

by considering that covariates and spatial interactions act multiplicatively on them. Let Hi,t

be the increasing σ-field generated by all the binary stochastic processes defined above,

except the i-th one, and up to time t:

Hi,t = σ (Yj(s), s ≤ t, j ∈ {1, . . . , n} \ {i}) .

Since Hi,u ⊆ Hi,t for any u ≤ t, therefore we have the following equality λi(u|Hi,u) =95

λi(u|Hi,t) for u ≤ t.96
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The hazard function of the i-th component, denoted λi, depends on the covariates and the

state of its neighbours as follows:

∀t ≥ 0, λi(t|Hi,t) = λ(t) exp

(
α
∑
j∈Bi

Cj(t)Yj(t) + β′Zi(t)

)
, (1)

where λ(·) is the baseline hazard function, α ∈ R, β ∈ Rp and where, for the i-th

component, Zi(·) is a vector of p time-dependent covariates (environmental conditions, such

as temperature, or material properties, such as steel plate, etc.) and Cj(·), j ∈ Bi, is a

time-dependent covariate (it may be one component of the vector Zj(·), e.g. the mechanical

stress). In fact, it could be sufficient to condition with respect to {Yj(t), j ∈ Bi} instead of

Hi,t, but it will be more convenient to condition on Hi,t when considering the cumulative

hazard function and/or the conditional survival function. Indeed, the conditional survival

function of the i-th component is given by:

∀t ≥ 0, Si(t|Hi,t) = exp

(
−
∫ t

0

λi(u|Hi,u)du

)
(2)

If α = 0, it corresponds to the standard Cox model with time-dependent covariates.97

To simplify, we assume that λ is the hazard function of the Weibull distribution with scale

parameter a > 0 and shape parameter b > 0:

∀t ≥ 0, λ(t) =
b

a

(
t

a

)b−1

. (3)

However, any other parametric model could be considered for the baseline hazard function.98

We illustrate the effect of the components’ physical interaction through two simulations on99

a square grid of 50× 50 components, without imposing special impact from the mechanical100

stress nor the other covariates (for all i ∈ V , Ci(t) ≡ 1 and β = 0). The outputs are plotted101

respectively in Figure 2 and Figure 3 (red points represent failed components). To perform102

the simulations, we have used Algorithm 1 described in Sub-section 3.2. The parameter of103
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the Weibull hazard function was set as follows: a = 2 and b = 2. Parameter α has been set104

to 0 (no spatial interaction) and 2 (interaction). In both cases, the figures show the state105

of the system after 74, 274, 475 and 678 failures (for a total of 2500 components). We can106

observe that, on contrary to the model with physically independent components, clusters of107

failed components arise in the model with spatial interaction.108

[Figure 2 about here.]109

[Figure 3 about here.]110

In the next section, we will propose an estimation procedure for the different parameters111

involved in the model described above. The approach is based on the SEM algorithm, a112

stochastic version of the EM algorithm proposed by Celeux et al. [6]. To this purpose, we113

need to simulate missing observations and thus simulation algorithms will be provided.114

3. STATISTICAL INFERENCE

Assume that the system is not often inspected and the inspections are not necessarily115

periodical. At each control, all the components of the system are inspected. Consequently116

the inspection times are the same for all the components: we will denote by m the number117

of inspections and by τ1 < · · · < τm the associated deterministic times. The available data118

at each inspection time is a binary information on whether each component is failed or119

not. Since the failures may occur between two successive controls, the data are interval-120

censored. Here, we neglect the possibility of non-detection of a failure during an inspection.121

For the time-dependent covariates C1, . . . , Cn and Z1, . . . ,Zn, it will be assumed that they122

are observed continuously, otherwise they will be constant piece-wise or linear piece-wise123

interpolated.124
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In Sub-section 3.1, we provide a methodology to estimate the parameters of the model (we125

consider a simplified parametric model). This approach requires to simulate missing data126

and the useful simulation algorithms are detailed in Sub-section 3.2.127

3.1. Parameter estimation128

In order to proceed parameter estimation, first the expression of the likelihood function is129

given. It is highlighted that it is numerically too complex to use this function to estimate130

the model parameters. Hence, we suggest to rather use the SEM algorithm jointly with a131

pseudo-likelihood function. Before giving details about the proposed approach, we introduce132

some notations.133

3.1.1. Notation134

We shall denote by Yobs the set of all the observations {Yi(τj), i ∈ V, j ∈ {1, . . . ,m}}. Notice

that Yobs ∈
⋃n
i=1 Hi,τm . Let N1 be the set of all failed components at the last inspection time

τm. For a component i, 1 ≤ i ≤ n, let ji = min{j;Yi(τj) = 1} ∈ {1, . . . ,m} be the inspection

time such that the failure of component i is observed for the first time. Thus, for the i-th

component, the failure occurs between τji−1 and τji . For convenience, we denote by Ir the

set of components failing between τr−1 and τr for any r ∈ {1, . . . ,m} (with the convention

that τ0 = 0):

Ir = {i ∈ N1; ji = r} and nr = |Ir|.

Hence, we have N1 = I1 ∪ · · · ∪ Im. Let Im+1 = V \N1 be the set of all components that135

have survived until the last inspection time τm. Let nm+1 = |Im+1|. Clearly we have n =136

n1 + · · ·+ nm + nm+1. For any r ∈ {1, . . . ,m+ 1}, let Ar = {Ti ∈ (τr−1, τr]; i ∈ Ir}, with137

τ0 = 0 and τm+1 = +∞, be the set of events consisting of the components failed between138

τr−1 and τr.139
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3.1.2. Likelihood function expression and the encountered difficulties140

The likelihood function can be expressed as follows:

L(α,β, a, b;Yobs;C1, . . . , Cn,Z1, . . . ,Zn) = P[A1]P[A2|A1]P[A3|A1 ∩A2]

× · · · × P[Am|A1 ∩ · · · ∩Am−1]P[Am+1|A1 ∩ · · · ∩Am].

Let us compute P[A1]:

P[A1] =
∑
σ1∈Σ1

P[0 < Tσ1(i1) < · · · < Tσ1(in1 ) < τ1]

where Σ1 is the set of all permutations of elements {i1, . . . , in1} in I1. We shall recall that

|Σ1| = n1!. Next step consists in assessing all these n1! probabilities:

P[0 < Tσ1(i1) < · · · < Tσ1(in1 ) < τ1]

=

∫ τ1

0

P[0 < Tσ1(i1) < · · · < Tσ1(in1 ) < τ1|Tσ1(i1) = u1]fTσ1(i1)(u1)du1

=

∫ τ1

0

P[u1 < Tσ1(i2) < · · · < Tσ1(in1 ) < τ1|Tσ1(i1) = u1]fTσ1(i1)(u1)du1

where

fTσ1(i1)(u1) =
b

a

(u1

a

)b−1

exp

(
−
(u1

a

)b)
.

Now we compute the inner probability. In the same way,

P[u1 < Tσ1(i2) < · · · < Tσ1(in1 ) < τ1|Tσ1(i1) = u1]

=

∫ τ1

u1

P[u2 < Tσ1(i3) < · · · < Tσ1(in1 ) < τ1|Tσ1(i2) = u2]fTσ1(i2)|Tσ1(i1)(u2|u1)du2
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where

fTσ1(i2)|Tσ1(i1)(u2|u1) = λTσ1(i2)|Tσ1(i1)(u2|u1) exp

(
−
∫ u2

0

λTσ1(i2)|Tσ1(i1)(v|u1)dv

)

with

λTσ1(i2)|Tσ1(i1)(v|u1) =
b

a

(v
a

)b−1

exp (β′Zi2(v))

if i2 6∈ Bi1 , and with

λTσ1(i2)|Tσ1(i1)(v|u1) =


b
a

(
v
a

)b−1
exp (β′Zi2(v)) for v ≤ u1

b
a

(
v
a

)b−1
exp (αCi1(v) + β′Zi2(v)) for v > u1

if i2 ∈ Bi1 . Finally the probability P[A1] appears to be a n1-dimensional integral and thus141

its contribution to the likelihood function is the sum of n1! integrals in dimension n1. It will142

be similar for other contributions: for any j ∈ {1, . . . ,m+ 1}, P(Aj| ∩j−1
i=1 Ai) is the sum of143

nj! integrals in dimension nj.144

Consequently two problems may arise with the direct MLE method if some of the n1, . . . ,145

nm+1 are too large: (1) at each step of the optimization algorithm, a numerical procedure has146

to be used to compute an integral in possibly high dimension; (2) a combinatorial explosion147

when considering the different permutations. To avoid such problems, an alternative method148

is proposed. Before presenting this approach, we discuss some special cases. For instance, the149

two previously mentioned problems will not arise if nj ≤ 2 for all j ∈ {1, . . . ,m+ 1}. This150

may occur if m is close to n and if the components’ lifetimes are uniformly distributed151

between 0 and τm. However, spatial physical interaction between components reinforces152

clusters of failed components (as shown in the simulations, see Figure 3), thus this particular153

case may arise essentially when there is no interaction between components.154

To conclude the section, we give the likelihood function when components are physically

independent (i.e., when α = 0) and when there is no effect of the covariates (i.e., β = 0),
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since we will need it later:

logL(a, b;Yobs) =
m∑
r=1

nr log [S(τr−1; a, b)− S(τr; a, b)] + nm+1 log [S(τm; a, b)] (4)

with

∀t ≥ 0, S(t; a, b) = exp

(
−
(
t

a

)b)
.

3.1.3. SEM algorithm and pseudo-likelihood155

As seen above, the maximum likelihood estimator of the parameters cannot be computed156

neither in a closed-form, nor numerically. Due to the censoring mechanism (failure times157

are never observed exactly, only interval censored data are available), we have a problem158

of missing observations. Indeed, hazard functions depend on binary stochastic processes159

Y1, . . . , Yn which are only observed at inspection times. A solution to this problem consists160

in applying the SEM algorithm. This algorithm requires to simulate the missing data, which161

are the times-to-failure of the components (this will be described in the next sub-section).162

The SEM algorithm is described below.163

Step 0: parameter initialization. In equation 1, set α̂(0) = 0 and β̂(0) = 0 (no effect).164

Parameters a and b can thus be estimated by maximizing the equation (4)(since165

components are not interacting): â(0) and b̂(0).166

Step k: time-to-failures simulation and updating estimation.167

1. simulate T1, . . . , Tn using Algorithm 2 (see next Sub-section) and considering168

parameters α̂(k−1), β̂(k−1), â(k−1) and b̂(k−1);169

2. update the estimation by maximizing numerically the log-likelihood function: β̂(k),170

α̂(k), â(k) and b̂(k).171
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The final estimator is then given by considering the ergodic average of the estimators. After

K iterations of the algorithm, let:

α̂ =
1

K

K∑
k=1

α̂(k), β̂ =
1

K

K∑
k=1

β̂(k), â =
1

K

K∑
k=1

â(k) and b̂ =
1

K

K∑
k=1

b̂(k).

To finish the description of this approach, the expression of the likelihood function is

provided. Algorithm 2 simulates in fact the random vector of order statistics T(1), . . . , T(n)

(notice that the algorithm simulates also the random vector of rank statistics and let us recall

that the knowledge of these two random vectors is equivalent to the knowledge of T1, . . . , Tn).

Hence, a likelihood function may be defined from such simulated data. However, a drawback

of this approach is that it relies too strongly on the simulated missing observations and

may fail (in fact, SEM is mainly used for unsupervised classification problem and, in such

problems, only labels are not observed, so ”less” data is not observed and less information

is missing). For this reason, it is suggested to use the SEM algorithm based on a pseudo-

likelihood function which is obtained by ignoring the dependency between observations.

Pseudo-likelihood functions have been successfully considered in the literature, see, e.g., [8].

Here, we propose the following pseudo-likelihood function based on Equation (2):

pL (α,β, a, b;Yobs, C1, . . . , Cn, Z1, . . . , Zn, t1, . . . , tn)

=
∏
i 6∈N1

Si (τm|Hi,τm)
∏
i∈N1

[Si (τji−1|Hi,τm)− Si (τji |Hi,τm)]

=
∏

i∈Im+1

Si (τm|Hi,τm)
m∏
r=1

∏
i∈Ir

[Si (τr−1|Hi,τm)− Si (τr|Hi,τm)]

(a product over an empty set is considered to be equal to 1) where t1, . . . , tn are the missing172

observation which are reconstructed by using Algorithm 2. In fact, the simulated lifetimes173

are only used to determine the order of failureness of each components.174
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3.2. Simulation algorithms175

In this section, several simulation procedures are proposed. The first one will allow to simulate176

data that will be used in the next section for the numerical illustrations of the methodology.177

The second algorithm is used within the SEM algorithm.178

3.2.1. Data generation algorithm179

To generate lifetimes from the model described in Section 2, we can apply Algorithm 1. It180

draws the lifetimes T1, . . . , Tn and allows to construct the stochastic processes Y1(·), . . . , Yn(·).181

At least, to get data as considered in the previous Sub-section, we have to sample182

Y1(·), . . . , Yn(·) at times τ1, . . . , τm. To achieve this, we can stop Algorithm 1 at step r183

such that Tir−1 < τm < Tir (it is not useful to simulate all the n lifetimes).184

Require: n, a, b, α, β, Z1(·), . . . ,Zn(·)
1: T ← Vector(length = n)

2: T̃ ← Vector(length = n)
3: draw U1, . . . , Un i.i.d. from the uniform distribution over [0; 1]

4: {Step 1}
5: set R← {1, . . . , n} {set of non-failed components}
6: draw T̃1, . . . , T̃n by solving the following equation with respect to t1, . . . , tn:

log(Ui) +

∫ ti

0
λ(s) exp(β′Zi(s)) ds = 0

7: i1 ← argminj∈RT̃j {select the next component to fail}
8: Ti1 ← T̃i1 {store the next failure times}
9: for r ∈ {2, . . . , n} do

10: {Step r}
11: R← R \ {ir−1} {update the set of non-failed components}
12: for j ∈ Bir−1 ∩R do

13: draw T̃j by solving the following equation with respect to tj :

log(Uj) +

∫ tj

Tir−1

λ(s) exp

α ∑
k∈Bj

Ck(s)Yk(s) + β′Zj(s)

 ds = 0

14: end for
15: ir ← argminj∈RT̃j {select the next component to fail}
16: Tir ← T̃ir {store the next failure times}
17: end for
18: return T1, . . . , Tn

Algorithm 1: Model simulation
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3.2.2. Simulation algorithm using observation data185

In this paragraph, the general idea of the algorithm required to use the SEM algorithm186

is described. Roughly speaking, the idea is to simulate data by considering the successive187

observation intervals. Recall that, for any j ∈ {1, . . . ,m}, Ij is the set of components whose188

lifetimes are between τj−1 and τj and Im+1 is the set of non-failed components at the last189

inspection time τm. The procedure starts by simulating lifetimes for components in I1, then190

in I2, and so on. Algorithm 2 describes the suggested approach.191

4. SYSTEM TIME-TO-FAILURE

A definition of the system time-to-failure (system TTF, in short) can be based on a spatial192

extension of consecutive k out of n systems. In such a model, when components are displayed193

on a line (which appears to be a special case of our model) or on a circle, the system194

is assumed to be failed as soon as k consecutive components have failed. To achieve this195

generalization, several notations and random variables are introduced.196

Let us recall that V = {1, . . . , n} denotes the set of all components. For any subset U ⊆ V ,

set TU = maxi∈U(Ti). It corresponds to the time such that all components in U have failed.

Next, for any k ∈ {1, . . . , n}, let :

Uk = {U ⊆ V ; |U | = k and U is connected}

be the set of all subsets made of k connected components. We recall that two components

are connected if they are neighbours (in other words, if there exists an edge between these

two components) and that a sub-graph is connected if there exists a path between any two

components in this sub-graph. Imposing the connectivity of U is important due to the spatial

interaction of the components. We could also impose a condition on the diameter of the sub-

graph as follows (recall that the diameter of a graph is the longest shortest path between
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Require: n, a, b, α, β, Z1(·), . . . ,Zn(·), Yobs

1: T ← Vector(length = n)
2: T̃ ← Vector(length = n)

3: draw U1, . . . , Un i.i.d. from the uniform distribution over [0; 1]

4: {Interval I1}
5: R← I1 {set of non-failed components in I1}
6: for j ∈ I1 do
7: draw T̃j by solving the following equation with respect to tj :

log(Uj) +

∫ tj

0
λ(s) exp(β′Zj(s)) ds = 0

8: end for
9: h← argminj∈RT̃j {select the next component to fail}

10: Th ← T̃h {store the next failure times}
11: if n1 > 1 then

12: for r ∈ {2, . . . , n1} do
13: R← R \ {h} {update the set of non-failed components in I1}
14: for j ∈ Bh ∩R do

15: draw T̃j by solving the following equation with respect to tj :

log(Uj) +

∫ tj

Th

λ(s) exp

α ∑
k∈Bj

Ck(s)Yk(s) + β′Zj(s)

 ds = 0

16: end for

17: h← argminj∈RT̃j {select the next component to fail}
18: Th ← T̃h {store the next failure times}
19: end for

20: end if
21: for i ∈ {2, . . . ,m} do
22: {Interval Ii}
23: R← Ii
24: if ni > 0 then

25: for j ∈ Ii do
26: draw T̃j by solving the following equation with respect to tj :

log(Uj) +

∫ tj

τi−1

λ(s) exp

α ∑
k∈Bj

Ck(s)Yk(s) + β′Zj(s)

 ds = 0

27: end for

28: h← argminj∈RT̃j {select the next component to fail}
29: Th ← T̃h {store the next failure times}
30: if ni > 1 then
31: for r ∈ {2, . . . , ni} do
32: R← R \ {h} {update the set of non-failed components in Ii}
33: for j ∈ Bh ∩R do
34: draw T̃j by solving the following equation with respect to tj :

log(Uj) +

∫ tj

Th

λ(s) exp

α ∑
k∈Bj

Ck(s)Yk(s) + β′Zj(s)

 ds = 0

35: end for
36: h← argminj∈RT̃j {select the next component to fail}
37: Th ← T̃h {store the next failure times}
38: end for
39: end if
40: end if

41: end for

42: return T1, . . . , Tn

Algorithm 2: Lifetimes simulation based on observations Yobs
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any two vertices):

Uk,d = {U ⊆ V ; |U | = k, U is connected and diam(U) = d}

with d ≤ k ≤ n (the case with d = k is when failed components are aligned). In the sequel,197

we will only consider Uk for defining the system TTF, but of course similar definition for198

the system TTF can be obtained by considering Uk,d.199

Now, let us define the system TTF T of the system as follows:

T = min
U∈Uk

(TU).

Hence, T is the first time that k connected components have all failed. We can clearly recover200

the classical cases of parallel and series systems. Indeed, if k = n, then Un = V = {1, . . . , n}201

and thus T = TV = max(T1, . . . , Tn): this is a parallel system made of n identical components.202

If k = 1, then U1 = {{i}, 1 ≤ i ≤ n} is just the set of a single component and thus T{i} = Ti203

and T = min(Ti): this is a series system composed by n identical components.204

Now the survival function of the system TTF can be derived. For any t ≥ 0,

P[T ≥ t] = P[min
U∈Uk

(TU) ≥ t] = P[∀U ∈ Uk,TU ≥ t].

Since {TU , U ∈ Uk} is not a set of independent random variables, the survival function of205

T cannot be computed explicitly. A solution is to estimate it through simulation. However,206

the simulation of system TTF is also a challenging problem, since we have to detect the first207

time that k connected components fail. A brutal way to achieve this consists in enumerating208

the set of k connected components and, at each step of the simulation algorithm, to check if209

the failure of a new component induces that there exists such a sub-graph with only failed210

components. Such an enumerating task is a well known difficult problem and the number211

of k connected components is increasing exponentially with k (see the sequence A000088212
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in the OEIS - On-Line Encyclopedia of Integer Sequences - for the number of graphs on k213

unlabelled nodes). Clearly, the event of k connected failed components may arise quickly in214

presence of interaction between components.215

To illustrate this approach, a numerical study will end this section. Let us consider a grid216

made of 10× 10 components without imposing special impact from the mechanical stress217

nor the other covariates (for all i ∈ V , Ci ≡ 0 and β = 0). For the baseline distribution,218

parameters are set as follows: a = 2 and b ∈ {1.5, 3}. For the parameter modelling the219

physical interaction between components, let us consider three different values: α ∈ {0, 3, 5}220

(from no interaction to strong interaction). At last, k ∈ {4, 9, 16}. However, for sake of221

simplicity, only square shapes are considered for the sub-graphs (instead of any connected222

sub-graph with k vertices). Based on 1, 000 simulations, empirical means and standard223

deviations of system TTF are reported in Table 1. The empirical survival curves are224

represented in Figure 4.225

[Table 1 about here.]226

[Figure 4 about here.]227

It can be noticed in Figure 4 that when parameter α grows, the system lifetime decreases.228

Indeed, α quantifies the interaction level between components in a neighbourhood. As α229

increases, the impact of a component failure on the lifetime of its neighbours becomes more230

significant. Therefore, for high values of α, the number of failed components increases and231

the system failure becomes more imminent. Thus, it is logical to obtain results given in Table232

1 where the MTTF of the system decreases when α increases.233

Regarding parameter b, the shape parameter of the Weibull distribution (baseline hazard234

rate), we can notice its impact on the system MTTF in Table 1. For α > 0 as b grows the235

empirical means and standard deviations increase. In cases k ∈ {9, 16} for α = 0 as b grows236

the empirical means and standard deviations decrease.237
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5. NUMERICAL ILLUSTRATIONS

In this section, the SEM algorithm described above is illustrated on simulated data. For sake238

of simplicity, assume that:239

• components are displayed on a
√
n×
√
n grid;240

• the inspection times are time equally spaced, say τk = kδ for some δ > 0, 1 ≤ k ≤ m;241

• the baseline hazard function is defined in equation 3.242

We also consider the basic model where there is no covariate, nor specific impact of the

mechanical stress, but only a neighbourhood effect. In other words, Ci,j ≡ 1 and Zi,j ≡ 0 for

any (i, j) ∈ {1, . . . , n}2:

∀t ≥ 0, λi,j(t|H(i,j),t) = λ(t) exp

α ∑
(i′,j′)∈Bi,j

Yi′,j′(t)

.
In Table 2, the Root mean Square Errors (RMSE) of the parameter estimates are presented243

for different inspection steps δ ∈ {0.1, 0.5} and censoring rates {20%, 50%}. The real244

parameters are set as follows: a = 2, b = 3 and α = 1. We have considered a 20× 20 grid and245

performed 50 iterations of the SEM algorithm. The Root mean Square Errors of estimated246

values have been computed by considering 50 repetitions. When the sampling is very frequent,247

the increase of the censoring rate has no substantial impact on the RMSE. But when248

the sampling is less frequent, the censoring rate can significantly degrade the RMSE. The249

relatively small values of RMSE bring out the performance of our estimation method.250

[Table 2 about here.]251

6. CONCLUDING REMARKS

In this paper, we have considered a model allowing a physical interaction between the252

components. This interaction is based on a choice of a spatial neighbourhood for the253
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components. For such a model, we proposed a methodology to estimate the parameters using254

the SEM algorithm which requires appropriate simulation algorithms. These algorithms seem255

to be efficient, and they are expected to have the following behaviour: (a) the ’larger’ the256

neighbourhood is, the slower the algorithm reaches its stationary regime; (b) the ’larger’ the257

interval between two inspections is (say, as in the example studied in Section 5, the larger258

δ is), the slower the algorithm converges.259

As examples of more sophisticated models, we may consider the following ones.260

1) Model with covariates and without covariates (Ci(t) = 1, i ∈ N) : consider a random

time-dependent covariate as follows

Zi,j(t) = Ai,jφ(t),

where Ai,j are independent and identically distributed random variables and φ is for261

example one of the following deterministic functions: (a) constant: φ(t) = w; (b) linear:262

φ(t) = wt; (c) periodic: φ(t) = w cos
(

2πt
q

)
.263

2) Model without covariates (β = 0) and with more complex impact of mechanical stress:

the stress may be applied at the center of the grid (for sake of simplicity, set n = 2p+ 1)

and be diffused isotropically from the center as follows:

Ci,j(t) = exp

(
− 1

σ2

(
(i− p− 1)2 + (j − p− 1)2

))
.

3) Model with both covariates and mechanical stress: for this last case, we may combine264

the covariates and the constraint introduced above.265

This paper focused on the case of a parametric shape for the baseline hazard function.266

In fact, the original Cox model is a semi-parametric model: the baseline hazard function is267

a functional parameter (any positive function) while the parameters allowing to consider268

covariates are Euclidean parameters. Our assumption of fully parametric model can be269
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relaxed as it is done in the Cox model and a similar approach (as the one usually done270

with the Cox model) can be adopted by considering profile likelihood function (see e.g. [10]).271

For short term perspectives, we can extend the numerical illustrations for the Time-To-272

Failure, etc. Other definitions of the system failure can be considered and the system TTF273

distribution be calculated accordingly. The impact of covariates can also be modelled through274

another type of models such as accelerated failure time ones.275
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Figure 1. Illustrations of neighbourhoods: case of at most 4 neighbours (left) and case of at most 8 neighbours (right)
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FIGURES

Figure 2. Case of lifetimes without physical neighbourhood interaction (α = 0): plot of failed components after 74, 274, 475 and 678

failures
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FIGURES

Figure 3. Case of lifetimes with physical neighbourhood interaction (α > 0): plot of failed components after 74, 274, 475 and 678

failures
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FIGURES

Figure 4. Empirical survival function of the system TTF with k = 4, a = 2, b = 3 and for different values of α
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TABLES

TABLES

Table 1. Comparison of empirical means and standard deviations of system TTF for a = 2
and for different values of α, b and k

k = 2× 2 = 4
b = 1.5 b = 3

α Emp. mean Emp. std dev. Emp. mean Emp. std dev.
0 1.0876427 0.26016099 1.4638320 0.18031572
3 0.1945712 0.06079317 0.6161269 0.09767111
5 0.1077648 0.05126087 0.4520419 0.10582526

k = 3× 3 = 9
b = 1.5 b = 3

α Emp. mean Emp. std dev. Emp. mean Emp. std dev.
0 2.0649072 0.34523175 2.0249579 0.17143298
3 0.2382229 0.06000859 0.6847956 0.08665092
5 0.1173860 0.04992673 0.4744119 0.09856479

k = 4× 4 = 16
b = 1.5 b = 3

α Emp. mean Emp. std dev. Emp. mean Emp. std dev.
0 2.1105592 0.36572650 2.0466196 0.18027440
3 0.2560497 0.06160885 0.7104521 0.08581691
5 0.1220024 0.04954813 0.4846096 0.09574726
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TABLES

Table 2. The Root Mean Square Error of estimated values (â, b̂, α̂) where a = 2, b = 3 and
α = 1

inspection step δ
censoring rate

0.2 0.5

0.1 (0.3494, 0.5352, 0.1589) (0.3562 0.5627 0.1802)
0.5 (0.9932 0.6844 0.2321) ( 1.2623 0.7665 0.2491)
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