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Two Dimensions Residual Stresses Analysis Through Incremental

Groove Machining Combined with Electronic Speckle Pattern
Interferometry

G. Montay, O. Sicot, A. Maras,
E. Rouhaud, M. François

Abstract In this study a new residual stress determination

method in two directions simultaneously is presented. This

method is based on stresses relaxation in a groove that is

machined incrementally. The residual stresses relaxation

occurs simultaneously from both the depth and the length

of the groove. Thus, measuring the surface strain field

generated by the relaxation enables to determine the stress

gradient both along the depth and the length of the groove.

To measure the surface strain in a direction perpendicular to

the groove, a digital speckle pattern interferometer is used.

This method is suitable when the residual stress field in the

structure varies in the depth as well as along the surface of

the part, like for example in a welded structure. The method

is tested here on an aluminium plate in which a central band

has been shot peened.

Keywords Residual stresses . Incremental groovemachining

method . Electronic Speckle Pattern Interferometry (ESPI) .

Ultra-sonic shot peening . Aluminium

Introduction

Residual stresses are stresses that exist in a material without

the action of external load (mechanical or thermal) [1].

Theses stresses are in self equilibrium and usually give no

external manifestation. They are a result of the history of

the part, generated by past heterogeneous plastic deforma-

tion, thermal contraction/expansion and phase transforma-

tion induced by manufacturing processes [2]. They combine

to the service stresses and they can affect dramatically the

performance of the materials such as fracture resistance,

fatigue life, dimensional stability, quality of coatings, etc...

Residual stresses can have detrimental or beneficial effects

on the material behaviour according to their sign and

amplitude. Generally, tensile stresses are detrimental and

compressive stresses are beneficial. The design of new

residual stress analysis methods is a challenge to progress

in material science and technology. Knowing the magnitude

and distribution of residual stresses is important to assess

their effect on structural behaviour.

The majority of measurement methods (destructive or

not) determine residual stress evolution in one direction

(generally in depth or on the surface) [1, 3]. In many cases,

knowing the residual stress evolution in only one direction

is not sufficient. In the case of welded joints, the residual

stress field is neither homogenous in depth nor along the

transverse direction of the joint. Further, some structures are

prestressed only on part of their surface, e.g. some turbine

or fan blades can be LASER shock-peened on a fine band

and the remaining of the structure is not affected directly by

the process. More and more engineers tend to introduce

residual stress very locally. Thus, the knowledge of the two

dimensional distribution of residual stresses in the compo-

nent is usually required.

In the present study, a new residual stress determination

method in two simultaneous directions is presented. This

method is based on the evaluation of the stress relaxation

during the incremental machining of a groove. The residual

stress relaxation occurs simultaneously from both the depth
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and the length of the grove. Thus, by measuring surface

displacement or strain fields generated by the relaxation,

the stress gradient along both the depth and the length of

the groove can be determined. To measure the surface

displacements or the strains an optical interferometer is

used because it gives full field information with a good

resolution. Optical methods based on light interference

have been developed for more than twenty years to measure

mechanical fields (displacement, strain). Various techniques

can be found, shearography or grating shearography to

measure strains [4, 5] and ESPI or moiré interferometry to

measure displacements [6–8]. In the present study, Elec-

tronic Speckle Pattern Interferometry (ESPI) with a phase

shifting technique was chosen to measure surface displace-

ments. This technique does not require surface preparation,

provides a high resolution and a high sensitivity (about

100 nm in displacement) and is relatively simple to use.

Residual Stress Determination: Background

Several methods exist in the literature to determine residual

stresses. All these techniques are complementary and can

be classified as non destructive, semi-destructive and

destructive.

Diffraction methods play an important part in residual

stress measurements. They are based on the determination

of elastic lattice strain [3]. X-ray diffraction is limited for in

the depth investigation (several micrometers), when neutron

or synchrotron techniques that allow in-depth evaluation are

the most accurate methods but required costly heavy

installations. Ultrasonic methods need an experimental

calibration of the tested material which is not always easy

to do [9, 10]. The incremental hole drilling method is well

adapted for a large range of problems but it evaluates the

residual stress profile only along the depth (one dimension)

of the sample [11, 12]. The contour method is very well

adapted for two dimensions analysis but this method is not

easy to apply on large components and relies heavily on the

geometrical quality of the cutting surface [13–16].

The method proposed in the present paper can be

classified as semi-destructive, and gives the residual stress

profile along two directions (along the depth and along

another axis on the free surface). The method proposed in

this paper is an evolution of the incremental hole drilling

method and of the incremental slitting method [11, 17].

Principles of the Incremental Groove Machining

Method

The semi-destructive incremental groove machining method

(IGMM) is based on the stress relaxation principle. When a

groove is machined in a prestressed component (Fig. 1), the

residual stresses that were applied on the surface created by

the groove relax and this generates surface displacements.

The groove is drilled perpendicularly to the prestressed

area. The measured displacement Ux(x,y) is generated by

the relaxation of the stress field that was in the removed

part of the groove as described in Fig. 2.

The displacement Ux(x,y) is not constant along direction

y because the residual stresses are not homogeneous along

the groove. It is important to note that each measured

displacement Ux(x,y) is due to the relaxation of the stress

field in the groove as a whole, inducing a contribution of

the stress along y and in the depth.

Other consequences of the stress field relaxation must be

considered: the surface displacement, for a given depth

increment, depends not only on the stress relaxation due to

this increment but also on the stress in the previously

removed layer. The new stress distribution between two
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Fig. 1 Scheme of the groove, along axis y, machined in a localized

prestressed area
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Fig. 2 Scheme of the displacement Ux distribution along the groove

drilled for a given abscissa x
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successive machining operations must be considered to

determine the stress in the machined layer.

With this approach, the displacement field in the

direction x is determined experimentally for a given

abscissa x, along direction y for each depth increment.

With the help of a finite element analysis, the residual stress

field in directions y and z will be determined.

To measure the displacement perpendicularly to the

groove, speckle interferometry combined with a phase

shifting technique was used. This method gives the whole

field of surface displacement in the direction of the

sensitivity vector (along x in the present study).

Phase Shifting ESPI Applied to the Incremental Groove

Drilling Method: Theory

Electronic Speckle Pattern Interferometry (ESPI) is a

technique that is widely used to measure full-field defor-

mation on surfaces of many kinds of objects [18–20]. ESPI

is a non contacting surface displacement measurement

method. This method is suitable for in plane displacements

measurement and for rough surfaces. The speckle interfer-

ometer used in this study is a classical two beams

interferometer [18, 19] depicted on Fig. 3.

In this study, a temporal phase shifting method is used

[21]. The phase of one beam of the interferometer is shifted

with a mirror mounted on a piezo-translator. A set of

interference patterns corresponding to the given phase shifts

is recorded. In the present study, five phase steps are

recorded. For each phase step, the intensity Ii(x, y) of a

speckle pattern i is recorded:

I i x; yð Þ ¼ I0 x; yð Þ 1þ γ x; yð Þ: cos φ x; yð Þ þ 8
i

� �� �

i ¼ 1; 2; 3; 4; 5

ð1Þ

I0(x) is the intensity of the LASER light, γ(x) describe

the fringe contrast and φ(x) the optical phase of the wave

front to be determined. 8 i is a value associated with each

pixel coming from the complex interaction of the laser light

with the rough surface. It can be considered as random and

it is assumed that it does not vary during the experiment.

The optical phase is calculated with:

tanφ x; yð Þ ¼
�2 I4 x; yð Þ � I2 x; yð Þð Þ

2I3 x; yð Þ � I1 x; yð Þ � I5 x; yð Þ
ð2Þ

This phase is calculated for each pixel of the image to

obtain a phase map of the area of interest of the structure.

This phase map is calculated for a given state of deformation.

The perturbation of the structure generates a new state of

deformation. A second phase map has thus to be calculated

after the perturbation. The difference (pixel to pixel) of the

two phase maps generates a fringe pattern containing the

displacement information of the material between the two

states of deformation describe by equation (3).

Ux x; yð Þ ¼
Δφ x; yð Þ1

4π sin θ
ð3Þ

Δφ(x,y) is the optical phase difference due to the object

deformation, 1=632.8 nm the wavelength of the laser light

and θ=45° is the illumination angle (Fig. 3).

Phase Shifting and Groove Machining: Application

on Ultrasonic Shot-Peened Band

The specimen is an aluminum plate (AU4G) that has been

ultrasonically shot-peened on a 4 mm width band, only on

one side. This test specimen is then mounted on a thick T-

shape notched plate (Fig. 4). It can be presumed without loss

of generality that, in these conditions, the maximal residual

C
C

D
 S

en
so

r
Beam 1

Beam 2

2. 
x

Test 

C
C

D
 S

en
so

r

2 θ

specimen

Fig. 3 Speckle interferometer

for in-plane displacement

measurements along

direction x!
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stress is at the centre of the band and decreases to zero while

moving away from the shot peened area. Two residual

stresses gradients, along y and z, are present in the structure.

The groove is machined with a milling machine mounted

on a YZ translation table and locked when the position of

the drill is adequate. The diameter of the tool is 2 mm and

the rotation velocity is 5,000 rpm. The Y displacement of the

drill is operated manually. The drilling system is then

removed and the Ux(x,y) displacement field is recorded by

speckle interferometry. This procedure is repeated for

subsequent depths increments.

The piezo mirror (a piezoelectric transducer PZT) is used

to introduce phase shift. In this study, the reference image is

captured in an undeformed configuration before the groove

is machined. The deformed configuration is captured after

each machining operation.

Figure 5 represents the phase fringes for each increment.

The groove is the vertical band. The length of the groove is

always the same and is considered semi-infinite with

respect to the width of the prestressed area.

The size of each image is 768×576 pixels and 1 mm

corresponds to 20 pixels. The width of the groove is 2 mm

while the width of the shot peened band is 4 mm. On these

images, the groove is vertical and the prestressed area is

He Ne LASER

Beam splitter

CCD Camera

Drilling system

Specimen mounted

on the holding plate

Piezo mirror

PC

He Ne LASER

Beam splitter

CCD Camera

Drilling system

Specimen mounted

on the holding plate

Piezo mirror

PC

Fig. 4 Experimental set up

20 µm 40 µm 80 µm 

120 µm 160 µm 200 µm 

300 µm 400 µm 500 µm 

Fig. 5 Evolution of the fringe

patterns as a function of the

depth of the groove. The

prestressed area (axis x) is

horizontal
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horizontal. The fringes represent the displacement Ux(x,y).

The sensitivity of the optical set up is 0.447 μm for a fringe

order. The number of fringes increases as the depth of the

groove increases. So the surface displacement increases as

the depth increases and as the residual stress relaxation

occurs. The problem now is to link these displacements

maps to the residual stresses that were present in the

structure before the machining of the groove.

It is possible to use directly the measured displacements

to determine the residual stress field or the strains computed

from the displacements; the latter choice has been made in

the present study.

Stress Strain Relationship

A number of hypotheses have been assumed. It is

considered that:

– The material behaviour is isotropic and linear elastic

– All measured displacements are continuous

– The evaluated stress is homogeneous over each cell

considered.

– The residual stress determined is smaller than the

elastic limit of the material

– The length of the groove is infinite compared with the

dimensions of the prestressed area (Fig. 1) to neglect

boundary conditions effects.

– The machining of the groove itself generates negligible

displacements, this is a classical assumption for hole

drilling techniques and has been verified for the present

method with a stress free sample.

– The general form of the stress tensor in the shot peened

band can be written as

σ ¼
σx y; zð Þ 0 0

0 σy y; zð Þ 0

0 0 0

0

@

1

A

x;y;z

ð4Þ

This corresponds to a classical plate assumption for the

stress state: the stresses on the surface of the plate and on

surfaces parallel to this surface are negligible (σzz=σzy=σzx=0).

Because the prestressed treatment is homogeneous and

uniform on the surface, it is further considered that the shear

stress is small compared to the values of σx and σy in the

majority of the shot peened band.

When the groove is machined, it generates a free surface

of normal x. The force F
!

that was applied locally by the

removed material on the surface element ΔS (or loaded cell

presented on Fig. 6) is:

F
!

¼ σ: x!: d S ¼
σx:ΔS

0

0

0

@

1

A ð5Þ

Note that the force applied on the surface of the groove

is solely function of σx (and not σy) once it is admitted that

the stress tensor takes the form presented in equation (4).

To simplify the equations, σx is now written σ. Consider

further the configuration presented on Fig. 6. The displace-

ment U
!

measured at a point M(xm,yp) on the surface of the

plate, is due to the application of the force F
!

on the surface

element centered on (yk,zj). Then, there is a linear

relationship between U
!

and F
!
:

U
!

xm; yp
� �

¼ A0 xm; yp; yk ; zj
� �

:F
!

yk ; zj
� �

or

Ux xm; yp
� �

Uy xm; yp
� �

Uz xm; yp
� �

0

@

1

A ¼ A0 xm; yp; yk ; zj
� �

:

σ yk ; zj
� �

:ΔS

0

0

0

@

1

A ð6Þ

where A′ is a matrix of coefficients depending on the

material properties (Young modulus and Poisson ratio), the

geometry of the structure and on the respective position of

M and F
!
. For the shot peened band, F

!
corresponds to the

force applied on a loaded cell and is associated to the

residual stress σ(yk,zj) that has been relaxed at one point of

the surface of the groove (see Fig. 6). Noting

" xm; yp
� �

¼
@Ux xm; yp

� �

@x
ð7Þ

Equation (6) is equivalent to a linear relationship between

the strain ε(xm,yp) evaluated on the surface from the dis-

placements measured with the ESPI and the stress σ(yk,zj)

such that:

" xm; yp
� �

¼ A xm; yp; yk ; zj
� �

s yk ; zj
� �

ð8Þ

x 

z 

y 

M

 
→

→

F (yk, zj) 

Symmetry 

plane 

 U (xm,yp) 

Machined 

increment 

Loaded cell 

xm yp 

Fig. 6 Scheme of the machined groove in the component to specify

the coordinates and indices
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where A(xm,yp,yk,zj) is a scalar calibration coefficient depend-

ing on the material properties (Young modulus and Poisson

ratio), the geometry of the structure and on the respective

position of M and F
!
.

When the first increment of the groove is machined, the

stresses are not homogeneous along y, thus a linear com-

bination of equations similar to equation (8) can describe

the problem by superposition. Further, when the groove is

machined deeper for another increment, the total value of

the displacement Ux(xm,yp) is not only due to the stresses

relaxed in the current machined increment but also to the

stresses relaxed in previous increments. Also, the machin-

ing of the groove generates a new stress distribution in the

part and changes the geometry of the system. The relation

between the measured strain field and the relaxed stress

field is thus a linear combination where A becomes a matrix

of coefficients, to be evaluated for each increment due to

the change in the geometry of the groove. Let the indices i

represent the number of increments machined into the

groove, the coefficients of A depends thus also on i. If the

surfaces of the plate and of the groove are now discretized,

it is possible to replace the coordinates by the indices

already introduced in Fig. 6 and equation (8) becomes:

"imp ¼ A
imp
jk s jk ð9Þ

The upper indices are associated to the strain measure-

ment method:

& i represents the current depth increment,

& m represents the strain coordinate in the x direction,

& p represents the strain coordinate in the y direction, that

is the measurement line,

while the lower indices are related to the stress position

on the face of the groove:

& k represents the loaded cell number in the y direction.

& j represents the loaded cell number in the z direction

In the examples below, only one measure of the strain is

made in the x direction (m=1), thus the indices m are no

longer specified in the equations.

The method is first illustrated with a case study

presented on Fig. 7. The problem is here discretized for

the first groove increment (i=1) with a specific simplified

geometry whose generalization will be discussed in

subsequent parts of this work. Consider three cells of equal

areas on the surface of the groove loaded with σ11, σ12, and

σ13, constant normal stresses on each respective cell.

Consider further three strains ε11, ε12 and ε13 measured on

the surface of the plate, on three lines (defined by y equal

constant) issuing from the middle of the border of each cell

at a given m=1 position as specified on Fig. 7. Then, by

superposition, it is possible to construct an equation whose

solution is σ11, σ12, σ13:

A11
11 A11

12 A11
13

A12
11 A12

12 A12
13

A13
11 A13

12 A13
13

0

@

1

A:

σ11

σ12

σ13

0

@

1

A ¼
"11

"12

"13

0

@

1

A or
X

3

k¼1

A
1p
1k :σ1k ¼ "1p

ð10Þ

The indices have the same signification as for equation (9).

Considering that the length of the groove is infinite, there is

no effect of the groove edges on the coefficients. Consider

further that each cell is charged alternatively with a unit

stress, it can be deduced from the geometrical regularity of

the system:

A11
11 ¼ A12

12 ¼ A13
13

A12
11 ¼ A11

12 ¼ A13
12 ¼ A12

13

A13
11 ¼ A11

13

ð11Þ

This could be repeated for any number of loaded cells as

long as the area of the cells are equal to the reference cell

and the strain is evaluated at the same relative position.

Under such conditions, only one finite element simulation

is necessary corresponding to a unit load on a unique cell

and the matrix A is symmetric, which simplifies the

inversion of equation (10).

Note that it is not necessary that the cells be of equal

area and that the strains be measured at any specific

positions. For these cases, equation (10) remains valid, but

each of the coefficients of A are to be determined

individually and the matrix is no longer symmetric.

Computation of the Calibration Coefficients

When the matrix A is symmetric, the calibration coefficients

are obtained through a single finite element analysis by

ε13

ε12

ε11

σ

σ

σ

13

12

11

x1 

x 

z 

y 

Fig. 7 Simple discretization for the first groove increment (i=1)
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loading a cell with a unique unit stress σ=1 MP and

calculating the corresponding strains. Figure 8 represents a

scheme of the load applied in the finite element model. The

model for the part is sufficiently large to warranty that

the groove can be considered infinite. Only one quarter of

the structure is modeled due to the symmetry of the struc-

ture and the symmetry of the load. The finite element mesh

is composed with 390 C3D8 elements, the bottom nodes of

the solid are fixed, the load and symmetric conditions are

imposed as presented on Fig. 8. Figure 9 presents the

results obtained for the x component of the displacement

field computed with the finite element simulation. It can be

seen that the displacements tend to zero away from the

loaded cell, which confirms that the model is equivalent to

an infinite groove. The coefficients are then given with

A11
11 ¼

"11num
s

;A12
11 ¼

"12num
s

;A13
11 ¼

"13num
s

ð12Þ

where "11num, "12num and "13num are the numerical strains

determined at the predefined positions (mp), and num

indicates a numerical value computed with the finite

element method; σ is the stress value of the stress applied

in the finite element computation (1 MPa). Once the

coefficients are defined, equation (10) can be inversed to

find the stress field:

:

σ11

σ12

σ13

0

@

1

A ¼
A11
11 A11

12 A11
13

A12
11 A12

12 A12
13

A13
11 A13

12 A13
13

0

@

1

A

�1 "11exp
"12exp
"13exp

0

B

@

1

C

A
ð13Þ

where "11exp, "
12
exp and "13exp are now the strains evaluated from

the experimental displacements (indicated by exp) and

evaluated at the same predefined positions than their

numerical counterparts.

Stress Strain Relationship for the Second Groove Increment

For the second increment machined, the new residual stress

distribution due to the first increment must be taken into

account (see Fig. 10). Indeed, the fact that the stresses relax

during the previous machining, generates a new stress

distribution in the solid when it is the initial one that is

sought for. Further, there is a new set of coefficients for

each geometry of the groove. For the simple geometry of

the example chosen (see Fig. 10), the measured strains are

Fig. 9 Numerical displacement Ux(x,y) for the first step drilled

 σ=1MPa 

Symmetry

 
num

11 
num

12   εε
ε 

num

13

Fig. 8 Load and boundary conditions applied in the finite elements

model
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now the consequences of the relaxation of the two rows

of cells. The residual stress σ2 is affected by the new

distribution of stress and by the new geometry of the struc-

ture it can be seen that equation (16) take in account this

contribution δσ. This means that they are a function of the

six stress values through coefficients that are different from

the one computed for the first increment. For the second

increment machined, as presented on Fig. 10, the strains

ε21, ε22 and ε23 on the surface are by superposition:

"21

"22

"23

0

@

1

A ¼
A21
11 A21

12 A21
13

A22
11 A22

12 A22
13

A23
11 A23

12 A23
13

0

@

1

A:

σ11

σ12

σ13

0

@

1

A

þ
A21
21 A21

22 A21
23

A22
21 A22

22 A22
23

A23
21 A23

22 A23
23

0

@

1

A:

σ21

σ22

σ23

0

@

1

A ð14Þ

or

X

2

j¼1

X

3

k¼1

A
ip
jk :s jk

!

¼ "ip ð15Þ

The stresses σ11, σ12, σ13 are known from the first

increment. The residual stresses that where present in the

structure before the machining can be obtained with:

σ21

σ22

σ23

0

@

1

A ¼
A21
21 A21

22 A21
23

A22
21 A22

22 A22
23

A23
21 A23

22 A23
23

0

@

1

A

�1

:

"21

"22

"23

0

@

1

A�
A21
11 A21

12 A21
13

A22
11 A22

12 A22
13

A23
11 A23

12 A23
13

0

@

1

A:

σ11

σ12

σ13

0

@

1

A

0

@

1

A

ð16Þ

The same type of finite element analysis as for the first

increment can be performed to find the new set of

coefficients. The matrices will conserve their symmetry as

long as the areas of the cells are equal and the strains are

measured at predefined positions. It can be further noted

that equation (16) is general: the size of the cells for the

second increment can be arbitrary and not necessarily

connected to the size of the cells of the first row if the

coefficients are to be computed individually.

Ux(x,y=0) µm

0

0,5

1

1,5

2

2,5

3

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Position along x (mm)

20µm

40µm

80µm

120µm

160µm

200µm

300µm

400µm

500µm

Fig. 11 Measured displacement

along the centre line (y=0) of

the prestressed area for various

machining increments from 20

to 500 μm
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Fig. 10 Scheme of the new in

depth stress distribution in depth

for the second groove increment

(i=2)
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Stress Strain Relationship in the General Case

In the general case and for subsequent groove increments, a

number K of cells is considered for a total of I increments

machined. The number of lines on which the strains are

measured is P. This gives a number I×K unknown stress

values to be obtained from a number I×P strain measure-

ments. When the first increment is machined, it comes

"1p ¼
X

K

k¼1

A
1p
1k :s1k ð17Þ

When increment i is machined:

"ip ¼
X

K

k¼1

A
ip
ik :s ik þ

X

i�1

j¼1

X

K

k¼1

A
ip
jk :s jk ð18Þ

The term
P

K

k¼1

A
ip
ik :σik of this last equation contains the K

unknown stresses σik of the current increment (number i) as

a function of the measured strains εip and of the stresses

calculated for the previous increments
P

i�1

j¼1

P

K

k¼1

A
ip
jk :σjk. This term

describes the stress redistribution in layer i due to previous

machining increments.
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Fig. 12 Surface displacement on the two parts (left and right) of the groove as a function of the position x and as a function of the depth
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If the number P of measurement lines is equal to the

number K of cells, the system of equation (18) can in

general be inverted directly. It can be noted that the number

of lines P where the strains are evaluated does not have to

be equal to the number of cells K. Ideally P should be

higher than J: this would mean that there are several mea-

sured strains at a given x for each stress cell, increasing the

number of experimental data to determine the stress and thus

minimizing uncertainties on the results. The method pre-

sented above can be generalized for this situation but looses

its geometrical convenience. If the number P of measure-

ment lines is larger than K, then, the system [equation (18)]

can be solved with the help of a least square procedure.

All the above discussion was done for strain measure-

ments at a given single distance xm from the groove centre

(m=1) in equation (9) but it can be generalized to an

arbitrary number of measurement points on each line as

well, taking the indices m into account. Similar relations

can also be obtained to relate stresses and displacements

instead of strains.

Results

In this study, the indices i, j, k and p proposed by the

authors are:

& 1< i<9; I=9 in depth machined increments,

& 1< j<I, 1<k<6 (K=6) that is a total of I×K=54 stress

cells,

& 1<p<6; P=6 measurement lines with P=K.

Figure 11 represents the displacements measured with

the ESPI in the centre of the prestressed area (y=0). The

displacements are given for the nine increments drilled and

on the left and on the right of the groove. We can note a

good symmetry in the displacement field, except very close

to the groove for the last three increments. This symmetry

in the displacement field proves that the tools axis is

perpendicular to the surface. This symmetry can also be

seen in the fringe patterns (see Fig. 5). Figure 12 shows an

example of the displacement field Ux(x,y) obtained as a

function of the depth and for three positions along x.

To calculate the strain, two positions are chosen for the

displacements: x=1.8 mm and x=3.3 mm. These measure-

ment points have been chosen far enough from the groove

not to be affected by the eventual plastified area due to the

machining. The strain is calculate with:

" ¼
Ux x ¼ 1:8; yð Þ � Ux x ¼ 3:3; yð Þ

L
ð19Þ

L is the distance between the two points (L=1.5 mm).

The same points are used in the finite element simulation to

compute the calibration coefficients. For each increment,

the displacement is extracted for the six positions in the

direction y. The influence of the shot peened area (−2 mm<

y<+2 mm) on the value of the displacement can be

observed on Fig. 12. The displacement magnitude

decreases while moving away from the prestressed area.

The residual stress profiles along the direction y and

along the depth are presented in Fig. 13. It can be seen that

the prestressed area extends beyond the treated area: out of

this area the residual stress is not equal to zero but

decreases while moving away from the prestressed area:

for 2 mm<y<3 mm a residual stress gradient exists indeed

in the structure.

Conclusion

A new approach in residual stress analysis based on the

combination of an optical and a mechanical setup is

proposed. The results presented confirm the feasibility of

this approach, which has next to be compared to other

stress evaluation methods. Sources of uncertainty and error

and estimation of their magnitude will be presented in a

future paper. The originality of the technique is the

possibility to measure both the stress profile in the depth

of the structure, and the stress profile along the axis of the

machined groove. This can be useful to measure stress

gradients in two directions, for instance in welded joints.

With this technique, the influence of a prestressed area,

larger than the treated area, was estimated accurately. An

advantageous choice of geometry can further be performed

to limit the number of finite element computations. These

results have been determined with a minimum of measure-

ments, only with a small groove in the structure, which

classifies this method as semi-destructive.
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