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Abstract 

This work presents a methodology to determine the Young’s modulus of an individual coating 
in a multilayered system by means of the Impulse Excitation Technique (IET). In this 
technique, the composite beam is excited by an impulse and the frequencies of the first four 
bending modes are extracted. They are used in a one-dimensional model to obtain the 
Young’s modulus of the coating. Based on two different theories: the Flexural Rigidity of a 
Composite Beam (FRCB) and the Classical Laminated Beam Theory (CLBT), different 
models proposed in the literature for bilayer beams have been extended to describe a beam 
composed of N dissimilar layers. Moreover, an enhanced model was developed based on the 
laminated theory. It takes into account the shift of the neutral axis after each deposited film, 
which makes it applicable for any film thickness. The reliability of the proposed model is 
investigated by comparing its predicted frequency to those of existing models for bilayers. It 
is also compared to finite element analysis of beams composed of two and three dissimilar 
layers. A metrological study was performed to quantify the most influencing factors on the 
global uncertainty. The methodology was applied to beams composed of three layers (N=3) 
with titanium and niobium thin films deposited by DC magnetron sputtering. The most 
accurate models are applied to obtain the Young’s modulus of Ti and Nb films in the 
Ti/Nb/(AISI 316 or Glass) multilayer beam. The films microstructure and morphology were 
analyzed by X-ray diffraction and scanning electron microscopy. 

Keywords: elasticity constants, multilayers, dynamical resonant method, coatings, physical 
vapor deposition, uncertainty. 
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1. Introduction 

Thin film deposition is a common technology used to enhance surface properties. The 
films are elaborated in various ways to protect materials from different types of damage [1, 2] 
and to obtain functional surfaces. Numerous coating types have proven to be useful in a wide 
range of applications [3-6]. These various types of coatings can be used individually or in 
combination (multiple layers) depending on the requirements of the operating environment [7-
10]. Multilayer structures containing metals, polymers and ceramics are widely used for 
modern technologies. Over the last twenty years, the investigation into the mechanical 
behavior of multilayer metallic thin films has attracted the attention of many researchers [11, 
12]. For reliable and safe operation, knowledge of the elastic behavior of each individual layer 
and of the multilayers as a whole is of particular importance. The rigidity of these coatings 
has an important role to prevent cracks and structural failure. For example, if the rigidity of 
the coating does not correspond to the flexural stiffness of the base material, shear cracking 
can be produced [13]. 

Elasticity constants are the main parameters that affect the response of a film to 
mechanical stresses. Young’s modulus is one of these important parameters describing the 
elastic deformation of materials. Even if this property is particularly difficult to determine for 
thin films, the Young’s modulus of a coating is crucial in terms of load carrying capacity [14]. 
Many static and dynamic techniques were developed to determine the elastic constants of bulk 
and coated materials [15-18]. In the following, we will focus on the determination of the 
coating Young’s modulus using a vibrational approach which is an accurate method to 
determine the mechanical behavior of materials. The Euler-Bernoulli bending beam theory 
was initially used to develop mathematical relations without taking into account the effects of 
shear and rotation. Subsequently, Timoshenko’s equation was simplified to consider both 
effects by adding some correction factors [19]. These factors are determined as a function of 
the sample geometry and different vibration modes. After 1999, these improved equations 
have led to the formulation of the standardized ASTM-E1876 test method. The Impulse 
Excitation Technique (IET) is one of the vibrational techniques used to determine elastic 
modulus [11, 15, 20-22]. It is nondestructive and one of the less intrusive techniques, used 
with high precision to measure the elasticity constants of a wide range of materials such as 
metals, composites, ceramics, etc. [16, 19, 23] and especially coatings [21, 24, 25]. The 
principle of this vibrational test is to correlate the resonant frequencies of the tested specimen 
with its mechanical properties through a suitable model. 

Using vibrational beam theory, several authors have developed a composite model 
(substrate + coating) for measuring the elastic modulus of a thin film. Berry et al. [26] were 
the first who used the IET to measure the Young’s modulus of a composite system (substrate 
+ film). The test relies on a two-step fundamental resonance frequency measurement of the 
sample: one measurement before deposition for the substrate and another one after deposition 
for the whole beam. After Berry et al., many researchers have used IET to test samples of 
various films with different thicknesses and elaboration techniques. For instance, Kim et al. 
[27] have used IET to test titanium (Ti)-coated silicon (Si) wafer specimens with different 
geometries, produced by radio frequency (RF) magnetron sputtering. They have shown that 
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the IET gives accurate results compared to a static method based on beam bending under a 
dead weight. Peraud et al. [28] have measured the Young’s modulus of 2.2 µm thin silicon 
carbide (SiC) and of 2.5 µm thin nickel-titanium alloy (NiTi) manufactured by the Dynamic 
Ion Mixing (DIM) method. They have shown that IET allows us to determine the Young’s 
modulus of very thin coatings. Cho et al. [29] have evaluated the Young’s modulus of 
different metallic films: Ni, Co, Cr and Ti thin films deposited by RF magnetron sputtering 
with different thicknesses on Si wafers. In terms of film thickness variation, they found that 
the Young’s modulus of Ni films decreased as the thickness of the film increased. For Cr and 
Co films, they did not find any significant difference. Etienne et al. [30] have measured the 
Young’s modulus of titanium nitride (TiN) of 0.2 µm of thickness elaborated by ion 
implantation. Bellan et al. [15] have evaluated the elasticity constants of 35 µm thick SiC and 
95 µm thick Pyrolytic Carbon (PyC) films elaborated by Chemical Vapor Deposition (CVD). 
They have shown that IET gives good and accurate results. The crystalline thin films are also 
used in the nanometric range such as in nano and microelectronic devices [7-10]. Hoy-Benítez 
et al. [25] have tested bilayer beams in a cantilever configuration and they measured the 
Young’s modulus of gold (Au) films of 100 nm thickness deposited on polysulfone (PSF) 
substrates of 130 µm thickness. They found similar results to those reported in the literature. 

For multilayer coatings, Cho et al. [29] have developed a model, based on the Flexural 
Rigidity of a Composite Beam (FRCB), to determine the film Young’s modulus of a bi-coated 
substrate. They applied this model to Cr/Ti bilayer thin films manufactured by RF magnetron 
with different sputtering times deposited on Si wafers. They suggested that the Young’s 
moduli of multilayer films might be obtained by repeatedly using a two-layer composite 
model. Recently, López-Puerto et al. [11] have developed a model based on the classical 
laminated beam theory (CLBT) and they applied it to obtain the elastic modulus of 200 nm 
aluminum (Al) and 250 nm thick Au films in an Al/Au/Kapton (125 µm) multilayer. After 
analyzing their model, they found that it provides great accuracy for the prediction of natural 
frequency in multilayered systems composed of thin films of less than 250 nm deposited on a 
thicker substrate. 

The problem of determining the natural frequency of a multilayer as a function of the 
elasticity constants of thin films becomes complex for more than two layers but few analytical 
solutions exist for this situation requiring the use of advanced laminated theories [31, 32]. 
Many studies have been made based on this laminated theory [33-37] however; their solutions 
present a lack of a closed-form analytical expression due to mathematical complexity. 
Therefore, a one-dimensional solution seems to be inexistent to predict the resonant 
frequencies of multilayers as a function of elastic modulus for any case of coating-to-substrate 
thickness ratio at different flexural modes. Also, concerning the vibrational mode, a lack of 
information concerning the determination of Young’s modulus using different modes 
measured by IET provides the motivation to carry out a thorough study and to develop new 
models which allow the determination of elastic modulus values. 

The aim of this work is to develop new models able to determine the elasticity 
modulus of “N” arbitrary films in a multi-coated structure. It presents a vibrational approach 
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to determine the ith (i > 0) harmonic resonant frequency as a function of the elasticity 
constants. The developed models take into account the shift of the neutral axis after 
deposition, which is essential in the case of layers with different elastic properties. They also 
take into account the effect of layering, the sources of error and the uncertainty of 
measurement. An investigation of the measurement accuracy will enable us to extract the true 
values of frequencies leading to the Young’s modulus of coatings. 

Firstly, a review of all the models developed in the literature to determine the Young’s 
modulus of coatings and the theoretical background of the IET is presented. Secondly, an 
enhanced analytical formulation based on the classical laminated beam theory is developed to 
determine the macroscopic Young’s modulus of “N” films (N > 0). It takes into account the 
shift of the neutral axis after deposition, which is an important factor affecting the solution, as 
was recently shown [38, 39]. An extension to multilayer structure is developed using the 
analytical models. The results were compared with the Finite Element Model (FEM) in order 
to validate the developed models. Finally, the models were validated experimentally and were 
applied to Ti and Nb films deposited by pulsed-DC magnetron sputtering on different 
substrates. 

2. Vibrational modeling 

2.1. Homogeneous beam 

In the analysis of the flexural vibrations of a uniform isotropic beam, the Euler-
Bernoulli equation is considered, neglecting the effects of shear and rotational inertia. The 
motion of a beam with length L, width b and thickness h, cross-sectional area S, mass density 
ρ, elastic modulus E, and second moment of area Iy subjected to flexural (z) vibrations can be 
described by the following differential equation, where w is the displacement along z [37]: 

 �� ���(�, 	)�	� + ��
��� �
�� ���(�, 	)��� � = 0 (1)

This differential equation can be solved analytically to determine the modal shapes 
and the natural frequencies of the vibration modes. In the present study, a free-free (FF) beam 
with a rectangular cross-section is used and the characteristic equation corresponding to these 
boundary conditions is: 

 ��� �� ���ℎ �� − 1 = 0 (2)

By solving Eq. (2), the non-dimensional Eigen frequencies Xn for the first four mode 
shapes were determined. Then, the resonant frequencies can be determined from the following 
equation [37]: 

 ��(�) = ���2���  
������� (3)
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Where the subscript “0” corresponds to the substrate. By inverting Eq. (3), the corresponding 
Young’s modulus can be determined from the following expression: 

 
� = �2���
��� �� ������  "��(�)#�

 (4)

The IET can be used to determine the Young’s modulus, in the case of FF beam with a 
rectangular cross-section, according to the following equation [40]: 

 
� = $%�� �&
ℎ�� '( "��(%)#�

 (5)

Where k1 ≈ 0.9465. Tf is a geometrical correction factor introduced to take into account the 
shear and rotary inertia effects [40]: 

 '( = 1 + 6.585(1 + 0.0752.� + 0.8109.��) 0ℎ�� 1� − 0.868 0ℎ�� 1&

−
23
34 8.34(1 + 0.2023.� + 2.173.7�) 0ℎ�� 1&

(1 + 6.338(1 + 0.1408.� + 1.536.��) 0ℎ�� 1�89
9: (6)

Where ν0 is the substrate Poisson’s ratio. For the case of hs / L ≤ 0.05, Eq. (6) can be 
simplified into the following expression: 

 '( = 1 + $� 0ℎ�� 1�
 (7)

Where k2 ≈ 6.585 

2.2. Composite beam structure 

The composite beam considered herein is a FF beam of length L, width b with 
rectangular cross-sectional area and total thickness ht constituted of a substrate and N 
dissimilar coatings (Fig. 1a); each one indicated by the index k (k=1,…, N) as shown in Fig. 
1b. The vibration measurements of the resonance frequencies are conducted sequentially, first 
for the substrate, then after each deposited film. This order of measurements requires the 
determination of the elastic modulus of the kth film (k > 0) before depositing the following 
one (k+1)th . Using these frequencies, the Young’s modulus of each individual film can be 
determined through analytical models that are proposed in the literature based on two 
different theories: the flexural rigidity of a composite beam (FRCB) and the classical 
laminated beam theory (CLBT). 

a) b) 
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Fig. 1. Schematic representation of a multilayer beam. a) Free configuration of a multilayer 

beam. b) The z-coordinates of each layer in a cross-sectional view. 

2.2.1. Models based on FRCB 

The FRCB theory assumes that the coatings are perfectly homogeneous and adherent 
to the substrate and the expression of the “n” resonant frequencies of the composite beam can 
be determined, using the Euler-Bernoulli solution (Eq. 3) as follows: 

 �;(�) = ���2���  
<�<�<�< (8)

Where EtIt is the flexural rigidity of the entire composite beam expressed as the sum of the 
flexural rigidity of each layer (Eq. 9). Moreover, the product ρtSt is expressed as the 
summation of the corresponding product of each layer (Eq. 10) [41]. 

 
<�< = = 
>�>
;

>?�
 (9)

 �<�< = = �>�>
;

>?�
 (10)

The subscripts “0”, “k”, “t” and “N” correspond to substrate, kth film, whole beam and the 
total number of coatings, respectively. 

Many models were developed [20, 22, 23, 26] with analytical expressions for a FF 
composite beam (substrate + coating) with a rectangular cross-sectional area to determine the 
Young’s modulus of a single layer coating (N=1). Some of these models [22, 26] assumed 
that the neutral axis remains fixed after deposition (it always corresponds to the mid-plane of 
the substrate cross-section). With this assumption, no shifting of the neutral surface is 
considered and a systematic error increases with the film thickness. Contrariwise, Pautrot’s 
model [20, 22, 23] was developed in order to take into account the shift of the neutral axis 
after deposition (Fig. 2a). This shift can be determined using the equilibrium of the axial 
forces [41] generated during pure bending (Fig. 2b). 

a) b) 
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Fig. 2. Schematic representation of the shift of the neutral axis: a) cross-sectional view, b) 
stress distribution in three-layer composite beam. 

Developing Eq. (8) by taking into consideration the shift in the expressions of second 
moments of area of both substrate and coating of Eq. (9), we obtain the analytical expression 
developed by Pautrot et al., expressing the ratio of the frequencies of the substrate and the 
coated substrate [20, 22, 23]: 

 @A(%B� = (AC%AD%E + 1) (AC%AD% + 1) + 3AC%AD%(AD% + 1)�
@AF%AD% + 1B(AC%AD% + 1)  (11)

Where: 

 AD% = ℎ%ℎ� (12)

 AF% = �%�� (13)

 AC% = 
%
� (14)

 A(% = �%�� (15)

Then, by inverting Eq. (11), the Young’s modulus of the coating can be calculated 
using the following expression: 

 


% = 
�2AD%& G@AD% + AF%AD%� B@A(%B� − 4AD%E − 6AD%� − 4AD%
+ 04AD%& H@1 + AD%AF%B@A(%B� − 1I
+ H4AD%E + 6AD%� + 4AD% − @AD% + AF%AD%� B@A(%B�I�1�.JK 

(16) 

Whiting et al. [23] have provided a simplified expression for a more direct calculation 
of the film elastic modulus with further simplification related to the thin film geometry as: 

 
% = 
�3 L2A(% + AF%AD% − 2AD% M (17)
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Where Rh1 << 1 and the terms containing powers of Rh1 greater than one may be neglected. 
The more general equation, Eq. (16), will be employed in this work to increase the accuracy. 
Note that all the models discussed above, for the resonant frequency of a bilayer beam 
(substrate + coating), are based on FRCB of isotropic materials and they neglect material 
anisotropy and damping contributions such as material viscoelasticity or other hysteretic 
effects [42]. 

2.2.2. Model based on CLBT 

In this section, a simplified one-dimensional (1D) model based on CLBT is used to 
determine the Young’s modulus of an individual thin film in a multilayer beam structure. It 
fulfills Kirchhoff’s law [43] and it is applicable for one, two and multiple layers [31, 32]. This 
theory assumes that the beam is symmetrical about the mid-surface of the composite beam 
with respect to the z-axis (Fig. 3) and neglects the effect of shear deformations with no 
coupling between bending and extension [25, 31]. These two assumptions are not respected in 
most cases where the film is deposited on one side of the substrate. However, it can be used as 
an approximation in the case of an asymmetric beam of several thin films deposited on a 
thicker substrate. Obviously, the higher the ratio of Young’s moduli and the thicknesses ratio, 
the higher the error associated with this model is [11, 24]. 

 

Fig. 3. Schematic view of a symmetrical laminated beam. 

In the case of a laminated beam, the bending stiffness matrix Dij (3x3) can be 
expressed as follows [43]: 

 NOP = Q RSOP(>)T�UT =VW
VWXY

13 = RSOP(>)(T>E − T>Z%E );[%
>?%

          \  ], ^ = 1, 2 �_ 6$ = 1, … , a + 1 (18)

Where zk is the coordinate of the kth layer and RSOP(>) are the transformed reduced stiffness 

elements, the function of the reduced stiffness including information on elastic modulus, 
Poisson’s ratio, and the orientation (ϴ) of the kth layer [11,43]. 

Working with the x-y axes as principal axes for both substrate and film leads to obtain 
a zero-layer orientation (ϴ = 0) [11]. For isotropic substrate and film materials, the stiffness 
elements become: 
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 RS%%(>) = RS��(>) = R%%(>) = R��(>) = 
>1 − (.>)� (19)

 RS%�(>) = R%�(>) = .>
>1 − (.>)� (20)

 RS%b(>) = RS�b(>) = 0 (21)

 RSbb(>) = Rbb(>) = 
>2 (1 + .>) (22)

Where: 
Ek: Elastic modulus of the kth layer. 
ʋk: Poisson’s ratio of the kth layer. 

The flexural moment per unit width My, producing transverse deflections w can be 
expressed in terms of the curvature as [43]: 

 c� = − 1U%%; ������  (23)

Where d11 is the (1,1) element of the bending matrix [d]=[D]-1. For a symmetrical laminated 
beam, d11 can be expressed as: 

 U%%(;) = N��Ud	 [N] (24)

 Ud	[N] = N%%N�� − N%��  (25)

Where det [D] is the determinant of the matrix Dij. 

The vibrating laminated beam subjected to a flexural moment My with transverse 
displacements w can be expressed, according to CLBT, by the following equation [11]: 

 
��c���� = �g(((;) ����	�  (26)

Where ρeff is the weighted area density (in kg/m2) expressed as: 

 �g(((;) = Q �>UT = = �>ℎ>
;

>?�
@∑ DWiWjk B/�

Z@∑ DWiWjk B/�  (27)

By substituting Eq. (23) into Eq. (26), the following differential equation of the 
transverse vibration of a symmetric laminated beam is obtained: 

 
1

U%%(;)�g(((;) �&���& + ����	� = 0 (28)
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Where the term d11 contains the properties of each layer (Young’s modulus, Poisson’s ratio 
and thickness). Notice that Eq. (28) has the same form as Eq. (1) for a homogeneous isotropic 
beam when carrying out the following transformations: 

 
� → 12
ℎ�EU%%(;) (29)

 �� → �g(((;)
ℎ�  (30)

By substituting Eqs. (29) and (30) into Eq. (3), the resonant frequencies of a laminated 
beam can be expressed as: 

 �;(�) = ���2���  1
U%%(;)�g(((;)  (31)

The frequency ratio becomes: 

 @A((;)B� = 12��
�ℎ�� n 1
U%%(;)�g(((;) o (32)

Much research has already been performed using the CLBT model in order to 
determine the elastic modulus of thin film [11, 24]. By comparing their model to a finite 
element model (FEM), López-Puerto et al. [11] found that the CLBT model is limited to a 
film thickness of 250 nm (Rh1 < 0.002). In our previous study [24], we found that the 
optimum error zone associated with the CLBT model is centered at Young’s modulus ratio 
equal to 1. This is due to the assumption of symmetry on which is based the CLBT model. We 
also found that Pautrot’s model presents the closest results to those of the finite element 
model. The next two sections (2.3 and 2.4) present two developed models based on the 
theories presented above. These models describe the behavior of multilayer beams in flexural 
vibrations. 

2.3. Extended Pautrot’s model (Ext-PM) 

As Pautrot’s model was the best used to determine the Young’s modulus of single 
layer coatings, an extension is applied to it, where the neutral axis will shift after each layer 
deposited. This shift can be generalized for any number “N” of isotropic layers using a 
generalized equation of equilibrium of the axial forces as follows: 

 = p q>U�> =;
>?�

Q 
� T UT + = Q 
> T UTrs
rY

;
>?%

gi
ZDk[gi

= 0 (33)

With: 
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 t% = d; + u> = ℎP
>Z%
P?%t� = t% + ℎ>            

               u> = \0    ]� $ = 1 1    ]� $ v 1     ($ = 1, … , a) (34)

By integrating Eq. (33) and applying the static equilibrium of a beam in pure bending, 
the generalized shift eN becomes: 

 d; = 
�ℎ�� − ∑ 
OℎOwℎO + 2uO ∑ ℎPZ%OP?� x;O?% 2 ∑ 
OℎO;O?�  (35)

Developing Eq. (8) by taking into consideration the shift (e2) of a bi-coated beam 
(N=2) in the expressions of second moments of inertia of both substrate and coating of Eq. 
(9), we obtain the new analytical expression developed herein, expressing the ratio of the 
frequencies of the substrate and the bi-coated substrate: 

 @A(�B� = 1 + y (AC%)� + z (AC�)� + 2{AC%AD% + 2NAC�AD�(1 + AD%AF% + AD�AF�)(1 + AC%AD% + AC�AD�)  (36)

Where: 

 AD� = ℎ�ℎ� (37)

 AF� = ���� (38)

 AC� = 
�
� (39)

 A(� = ���� (40)

 y = AD%&  (41)

 z = AD�&  (42)

 { = 2 + 6AD%(AD% + AD� + 1) + AD�(3 + 2AD�) (43)

 N = AC�AD�(2AD%� + 3AD%AD� + 2AD�� ) + 2AD%� + 3AD% + 2 (44)

Knowing the thicknesses and, mass densities of the substrate and of the two films, the 
Young’s modulus of the substrate and of the first film, and by inverting Eq. (36), the Young’s 
modulus of the second film is determined using the following equation: 

 
� = −|% + }|%� − 4~%�%2~%  (45)

Where: 
 ~% = AD�&  (46)
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|% = 4AD�E (1 + AC%AD%) + AD�� H6 − AF�@A(�B� + 6AD%(2 + AC%AD%)I
+ AD� L4 − @A(�B� + 4AD%� (3 + AC%AD%)
+ AD% H12 − AF%@A(�B�IM 

(47)

 
�% = 1 − (1 + AC%AD%)@1 + AF%AD% + AF�AD�B@A(�B�

+ AC%AD%(4 + 6AD% + 4AD%� + AC%AD%E ) 
(48)

 

2.4. Enhancement of the CLBT model (Dev-CLBT) 

As in the case of single layer coated beams, the CLBT model can be used to determine 
the Young’s modulus of the kth layer (Ek) if the elastic modulus of the (k-1)th, (k-2)th, … , 1st 
layers are known. For instance, in a bi-coated isotropic beam structure, the 3x3 bending 
stiffness matrix Dij is defined in Eq. (18) with N=2. An enhancement of the CLBT model is 
developed herein for “N” dissimilar layers; assuming that the neutral axis will shift after 
deposition using the shift of Eq. (35) and the new 3x3 bending stiffness matrix: 

 NOP� = Q RSOP(�)T�UTgi
ZDk[gi

+ = Q RSOP(>)T�UTrs
rY

;
>?%

          (], ^ = 1, 2 �_ 6) (49)

Where Z1, Z2 are expressed in Eq. (34). 

Inverting the new sub-matrix D’
ij of Eq. (49) for the case of a bi-coated (N=2) isotropic 

beam and applying the expression of d11 from Eq. (24), the new R0, R1 and R2 functions of the 
thicknesses and the shift e2, are determined as: 

 

U%% (�)

=

�A�1 − .�� + 
%A%1 − .%� + 
�A�1 − .��

L 
�A�1 − .�� + 
%A%1 − .%� + 
�A�1 − .��M� − L.�
�A�1 − .�� + .%
%A%1 − .%� + .�
�A�1 − .�� M� 
(50)

With: 

 A� = ℎ�E3 − d�ℎ�� + d��ℎ� (51)

 A% = ℎ%E3 + d�ℎ%� + d��ℎ% (52)

 A� = ℎ�E3 + (d� + ℎ%)(d� + ℎ% + ℎ�)ℎ� (53)

The frequency ratio of a laminated beam is expressed using Eq. (32) with the new 
expressions of D’

ij and d11 from Eqs. (49) and (50), respectively. This expression is an implicit 
function. Therefore, in order to determine the solution, an iteration loop is applied using 
bisection method [44]. The unknown elastic modulus of the second film (E2) is then found. 
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For bilayer coatings, López-Puerto et al. [11] proved that the solution depends on the 
stacking sequence selected (Au/Al/Kapton or Al/Au/Kapton) because of the lack of symmetry 
that can lead to larger errors (>1.3%) in the prediction of the frequency of a multi-coated 
beam using CLBT. Therefore, the developed models, based on the two different theories 
(FRCB and CLBT) will be examined by comparing them to a numerical model based on finite 
element analysis (FEA) in order to analyze quantitatively the difference between them. An 
outline of the analytical models proposed in the literature and the models developed in the 
present paper is presented in Table 1. 

Table 1 

Summary of the analytical models. 
Model Theory Nb. of layers Assumptions 

Lopez [22] FRCB Bilayer Isotropy 
Berry [26] FRCB Bilayer Simplification of Lopez’s model 
Pautrot [20, 22, 23] FRCB Bilayer Isotropy & Shift 
Whiting [23] FRCB Bilayer Simplification of Pautrot’s model 
CLBT [11] CLBT Multilayer Symmetry & Anisotropy 
Extended Pautrot (Ext-PM) FRCB Multilayer Isotropy & Shift 
Developed (Dev-CLBT) CLBT Multilayer Symmetry, Anisotropy & Shift 

3. Experimental details 

3.1. Thin film deposition 

High purity (99.99%) titanium (Ti) and niobium (Nb) thin films were deposited on 
stainless steel AISI 316 (sample 1), glass (sample 2) substrates and silicon (Si) wafers by 
magnetron sputtering in DC pulsed mode. The substrates were ultrasonically cleaned in 
acetone and ethanol for 10 min. Before deposition, they were cleaned by an Argon plasma 
etching at 0.38 Pa and 200 W (Ubias=21 V) during 30 min to remove impurities and surface 
oxides that could alter the quality of the adhesion of the films. In this phase, the Ti and Nb 
targets were pre-sputtered for 15 min. 

A DEPHIS4 Physical Vapor Deposition (PVD) machine was used with a 600 mm 
diameter cylindrical deposition chamber of 400 mm in height that was pumped down with a 
turbomolecular pump to less than 10-6 Pa before filling it with argon (Ar) gas. An argon flow 
rate of 50 sccm led to a constant working pressure of 0.2 Pa. The target-substrate distance was 
kept constant at 10 cm. 

Using a DC-pulsed power supply, the intensity applied to the targets was 3 A of a 275 
V discharge voltage (frequency = 50 kHz; time off = 4 µs) for the first film of Ti and 228 V 
(frequency = 100 kHz; time off = 4 µs) for the second film of Nb. The substrates were placed 
on a rotating holder (10 rpm) to ensure a perfect thickness homogeneity of the films. Under 
these conditions, the deposition of the first (Ti) and second (Nb) films was carried out with a 
deposition rate of 16.13 nm/min and 18.90 nm/min, respectively. The stainless steel (AISI 
316) and glass substrates were used for IET and nanoindentation characterizations and Si 
(100) wafers for the Scanning Electron Microscopy (SEM) images. 
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3.2. Dimensions and Density 

The coating has the same length and width as the substrate with different thicknesses. 
The dimensions of each substrate were measured ten times in ten different locations. The 
average dimensions and their uncertainties are represented in Table 2. Samples 1 and 2 
correspond to Nb/Ti/AISI 316 and Nb/Ti/Glass configurations, respectively. The standard 
uncertainties on the measured dimensions were evaluated by a type A method by computing 
the standard deviation [45]. The mass of the substrate was measured using a Sartorius 
precision balance and then its density was calculated. The uncertainties on the substrate 
masses were evaluated following a type B procedure [45]. According to technical 
specifications of the precision balance used, the uncertainty is equal to 0.1 mg. After 
deposition, the mass of the composite beam was measured. The bilayer beam corresponds to 
the Ti film deposited on the substrate. The second film was deposited on the previous beam in 
order to obtain a three-layered beam. The corresponding values are presented in Table 3. The 
difference in mass measured before and after each deposited film corresponds to the mass of 
the film. Its density was estimated by considering the mass and the dimensions of the film. 

Table 2 

Average dimensions and measurement uncertainty. 
  Length (mm) Width (mm) Thickness (mm) 

  L u(L) b u(b) h u(h) 

Sample 1 

Substrate (AISI 316) 69.98 0.027 19.97 4.7x10-3 0.505 2.6x10-3 

Film 1 (Ti) 69.98 0.027 19.97 4.7x10-3 4.84 0.013 

Film 2 (Nb) 69.98 0.027 19.97 4.7x10-3 3.97 0.029 

Sample 2 

Substrate (Glass) 75.33 0.036 25.38 9.4x10-3 1.016 8.1x10-3 

Film 1 (Ti) 75.33 0.036 25.38 9.4x10-3 4.84 0.013 

Film 2 (Nb) 75.33 0.036 25.38 9.4x10-3 3.97 0.029 

Table 3 

Mass and density with the measurement uncertainty. 
  Masse (g) Density (kg/m3) 

  m ρ u(ρ) 

Sample 1 

Substrate (AISI 316) 5.561 7879.70 40.75 
Film 1 (Ti) 0.031 4583.15 148.37 
Film 2 (Nb) 0.044 7930.68 189.36 

Sample 2 

Substrate (Glass) 4.774 2457.70 19.66 
Film 1 (Ti) 0.043 4646.90 108.82 
Film 2 (Nb) 0.063 8300.24 145.12 

 
3.3. Morphology 

Using a Hitachi S3500N SEM-FEG operated at 15 kV, the thickness of each bilayer 
film was measured ten times in ten different positions in order to determine the average 
thicknesses and their uncertainties (Table 2). Fig. 4 shows the fractured cross-sectional SEM 
image of Nb/Ti/Si multilayer sample. No significant variation appears in the film thickness. It 
can clearly be seen that the two films present a porous microstructure with a relatively 
columnar growth. This can be due to the change in energies of incident ions that are 
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transferred to adatoms during the deposition [46, 47]. The deposition rate and pressure [48, 
49] affect these energies. Besides, the absence of bias (polarization) can also favor this 
columnar film growth [46]. 

 

Fig. 4. Cross-sectional SEM image of the titanium and niobium films deposited on silicon 

substrate. 

3.4. Characterizations 

3.4.1. IET experiments 

The Impulse Excitation Technique (IET) is used to measure the natural frequencies of 
a specimen impacted by a striker. A beam can be excited in longitudinal, flexural and 
torsional vibrational modes [40]. The sample is placed on a support with negligible interaction 
(nylon wires placed along the nodal lines of the considered mode) in order to adopt a free-free 
(FF) boundary condition. These conditions are the simplest to adopt because they represent 
the configuration with the least interaction between the support system and the specimen 
compared with the other configurations. An RFDA professional signal analysis system 
(Resonance Frequency and Damping Analysis) from IMCE Company (Genk, Belgium) was 
used to measure the resonant frequencies. It is equipped with an RFDA transducer, an 
acoustic microphone with a frequency range up to 100 kHz, a universal wire support, an 
automatic excitation unit and a computer system equipped with RFDA software. The 
microphone detects the mechanical vibrations produced during the excitation of the sample. 
The detected vibrations are transformed by a transducer into an electrical signal that 
determines the vibration amplitudes as a function of time. Using the Fast Fourier Transform 
(FFT), the amplitudes are transformed as a function of frequency defining the resonant 
frequencies of the sample at different vibration modes. The sample’s support used is 
composed of wires located at the nodal points of the beam where the displacement is equal to 
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zero. More detailed explanations of the procedure can be found in the literature [40]. The 
measurement reliability can be characterized by its trueness and its accuracy, which were 
investigated in our previous paper [24]. 

The first four resonant frequencies of substrates (316L, Glass), bilayer (Ti/316L, 
Ti/Glass) and three-layer composite beams (Nb/Ti/316L, Nb/Ti/Glass) were measured. The 
vibration measurements were conducted sequentially, i.e., firstly, the resonant frequencies of 
the substrates were determined; then the titanium film was deposited on each substrate and the 
resonant frequencies of each bilayer beam were measured again; finally, the third layer (Nb) 
was deposited and the resonant frequencies of the three-layered beams were measured. As 
seen from Fig. 5, the frequency is shifted 2.58 Hz when the Ti film is deposited, and a new 
additional shift of 0.78 Hz is observed when the Nb film is deposited on the Ti/316L beam. 
These frequency shifts were used to calculate the substrate and films Young’s moduli using 
the corresponding analytical model. 

 

Fig. 5. The natural frequency of the substrate (AISI 316), one layer coated substrate (Ti/AISI 
316) and the multilayer comprising three materials (Nb/Ti/AISI 316). 

3.4.2. Nanoindentation 

The contact reduced elasticity moduli of the films were also measured by 
nanoindentation (NI) tests using a TriboIndenter TI 980-Hysitron with continuous stiffness 
measurement (CSM) option. For the measurements, a Berkovich diamond tip was used with 
elasticity constants Eind =1140 GPa and νind = 0.07. Before performing the measurements, the 
equipment was calibrated using a reference polycarbonate glass specimen. 

The films’ reduced moduli were determined by taking the average of ten indents and 
the uncertainty of measurements was determined from their standard deviation. The tests were 
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carried out under controlled load. In order to minimize the influence of the substrate or of 
previous layers, the indenter penetration depth was kept lower than 10 % of the coating 
thickness [50]. The corresponding penetration depth was found to be about 270 nm (8000 µN) 
for titanium and 300 nm (8000 µN) for niobium. The contact reduced modulus of the sample 
and the indenter can be expressed as [51-53]: 

 
�� = √�2� �√y (54)

Where β is a constant that depends on the geometry of the indenter, S is the contact stiffness 
and A is the projected contact area. 

Thus, the Young’s modulus of the indented material can be calculated from the contact 
reduced stiffness and the elastic properties of the tip as [51-54]: 

 
 = (1 − .�) G 1
�� − 1 − .O���

O�� KZ%

 (55)

Where Er
c is the contact reduced modulus, Eind and νind are respectively the Young’s modulus 

and the Poisson’s ratio of the tip, E and ν are respectively the Young’s modulus and Poisson’s 
ratio of the indented material. More detailed explanations of the procedure can be found in the 
literature [51-54]. 

3.4.3. X-ray Diffraction 

X-ray diffraction (XRD) was employed to identify the crystallographic structure of the 
films using a Bruker D8 Advance diffractometer equipped with a CuKα (λ=0.15418 nm) 
radiation operated at 40 kV and 40 mA. Different spectra were acquired at different 
inclination angles Ψ. The data, in the range of 2ϴ between 20° and 150°, were collected. 
Analysis of the diffraction patterns was performed using DIFFRAC.EVA software. 

4. Numerical simulation 

Finite element analysis (FEA) was carried out using the commercial finite element 
code ABAQUS [55] in order to determine the frequencies in the flexural mode of the naked 
substrate, the bilayer and the three-layered beams. Fig. 6 represents the first four vibration 
modes of a FF multilayered beam. The beam has a length L of 70 mm, width b of 20 mm and 
thickness h0 of 1 mm with a rectangular cross-section. Two different finite element models 
were constructed by bonding the coatings on the substrate already created through one of two 
different functions: tie or partition; that give no significant differences in the “n” modes of 
frequency extracted. The first model presents a single layer coated beam with a film thickness 
h1 that was varied from 0 to 1 mm. The second one represents a bi-coated beam with a first 
film thicknesses h1 of 4 µm (Rh1 = 4x10-3) and 100 µm (Rh1 = 0.1) and a second film with a 
thickness h2 that varied from 0 to 0.55 mm. 

a) 
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b) 

 
c) 

 
d) 

 
Fig. 6. Deformed flexural vibrating beam: a) mode I, b) mode II, c) mode III and d) mode IV. 

The colors indicate the vertical displacement (mm). 

To mesh the structure, C3D20 quadratic element was used since it presents excellent 
behavior for linear elastic calculations. A mesh convergence study of the first four frequency 
modes was performed to determine the mesh density at which the values of the first four 
resonant frequencies converge. By varying the number of elements in all three directions, the 
element size of 0.35x0.27x0.5 mm3 was chosen for the substrate that led to invariant 
frequency values even with the smallest elements. Considering the beam dimensions 
mentioned in the first paragraph, it gives 30,000 elements: 200 in the length direction, 75 in 
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the width and 2 in the thickness. For a multilayer beam with Rh1 > 0.5, one element through 
the film thickness was used (Fig. 7). For beam geometries whose substrate was significantly 
thicker than the first film (Rh1 ≤ 0.5), a variable element size through thickness was applied as 
shown in Fig. 7 to avoid the alteration of the frequency values. This mesh principle takes into 
account the effect of abrupt change in the size of the element at the film/substrate interface 
avoiding the cutoffs of the propagated waves that disturb the solution [56]. The resonant 
frequencies of the composite beam were extracted using the ABAQUS\Implicit Lanczos 
eigensolver. These configurations were chosen as a reference to validate the analytical models 
presented in section 2. 

a) b) 

 

Fig. 7. Cross-section of FEM with the meshing configuration: a) Rh1 > 0.5, b) Rh1 ≤ 0.5. 

5. Modal analysis 

A parametric comparison of the analytical models with the finite element model 
(FEM) was done with a combination of different Young’s modulus and density ratios. The 
following values represent different configurations chosen to operate at the extreme border 
where the former models remain invalid [11, 22, 26]. 

For a bilayer beam, the evolution of the frequency ratio Rf1 as a function of the 
thickness, density and Young’s modulus ratios, is represented in Fig. 8 with the thickness 
ratio Rh1 varying from 0 to 1. The ratios were chosen to cover a large range of materials used 
for surface coatings. A good agreement can be noted between the developed model (Dev-
CLBT), Pautrot’s model (Eq. (11)) and the FEM, for any Rh1, RE1 and Rρ1 ratios. The good 
reliability of Pautrot’s model has already been shown in our previous paper [24]. As can be 
seen, the good agreement of Dev-CLBT model shows that the influence of symmetry 
becomes negligible when taking into account the shift of the neutral axis after the deposition 
of the first film. For thickness ratios < 0.1, all models give approximately the same result. For 
thicker films (Rh1 > 0.1), the discrepancies between the different models increase due to the 
different assumptions on which each model is based. 

a) b) 
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c) d) 

 
Fig. 8. Comparison between analytical and numerical models for bilayer isotropic beam 

(substrate + film) for different Young’s moduli and density ratios: a) RE1=0.17, Rρ1=0.14, b) 
RE1=2.07, Rρ1=2.41, c) RE1=3.56, Rρ1=8.28, d) RE1=18.98, Rρ1=13.6. 

For a three-layered beam (substrate + bilayer films), another comparison was done 
with different Young’s modulus RE2 and density Rρ2 ratios. Fig. 9 represents the evolution of 
the frequency ratio Rf2 as a function of the thickness ratio Rh2 that varies from 0 to 0.55 with 
two different values of Rh1 equal to 0.004 and 0.1. A good agreement is noticed between the 
developed model (Dev-CLBT), the extended Pautrot’s model (Ext-PM) (Eq. (36)) and the 
FEM. As for the case of a bilayer beam, we can clearly see the divergence of the CLBT 
model. This difference between the models increases with the thickness ratio Rh2. 

a) b) 
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c) d) 

 

e) f) 

  

Fig. 9. Comparison between analytical and numerical models for a multilayer beam 
comprising three isotropic materials for different Young’s moduli and density ratios: a) 
Rh1=0.004, RE2=0.26, Rρ2=0.44, b) Rh1=0.1, RE2=0.26, Rρ2=0.44, c) Rh1=0.004, RE2=3.56, 
Rρ2=8.28, d) Rh1=0.1, RE2=3.56, Rρ2=8.28, e) Rh1=0.004, RE2=18.68, Rρ2=1.9, f) Rh1=0.1, 

RE2=18.68, Rρ2=1.9. 

The three models (Ext-PM, Dev-CLBT and FEM) predict very similar resonant 
frequencies for bilayer and three-layered beams. FEM is a numerical approach, which takes 
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into account the slenderness of the beam, and thus it can be considered as a reference to check 
analytical models. The difference between FEM and the two analytical models remains lower 
than 0.2 % in the range of the tested ratios (Rh, RE and Rρ), which is negligible. Consequently, 
the two models are validated and can be used for the prediction of the resonant frequencies. In 
the next sections, the two models will be used to determine the Young’s modulus of each film 
in a multilayer beam. 

6. Uncertainty analysis 

The uncertainty analysis was performed using the ISO standard guidelines [45]. The 
uncertainty on a quantity x is defined as the standard uncertainty calculated u(x) which is the 
standard deviation of the distribution of x values. In the present study, the quantitative values 
of the uncertainties of different sources related to the frequency measurements were imported 
from a previous work [24] where the experimental study was performed using the same IET 
set-up. Thus, other components of the uncertainty were calculated using the uncertainty 
propagation equation [57]. 

6.1. Frequency Uncertainty 

A series of experimental measurements were performed to identify and estimate the 
different sources of uncertainty on the measured frequencies. The sources of uncertainty were 
determined on the IET [24] and they led to a significant influence on the frequency 
measurement. Table 4 represents the uncertainty of the first four resonance frequencies. 

Table 4 

Uncertainty on the first four resonance frequencies. 

The global uncertainties of the resonant frequencies can be calculated from the 
following expression [24]: 

 �(�) = ����7� + ���O��� + ��g�� + �7����  (56)

Where upos, ualign, urep and usupp are the uncertainties caused by the position of the microphone, 
the misalignment between the sample nodal lines and the supporting wires, the repeatability 
and the nature of the support, respectively. 

It was found that the measurements are mostly affected by the nature of the support 
and the misalignment. The support and misalignment uncertainties present the highest 
contributions. This can be due to the approximate realization of the free-free condition. 

Uncertainty (Hz) 

Mode I Mode II Mode III Mode IV 

0.117 0.147 0.250 0.201 
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6.2. Uncertainty on the substrate and coating Young’s modulus 

Using the equation of uncertainty propagation, the global uncertainty of the substrate 
Young’s modulus was calculated by developing all the uncertainties that appear in Eqs. (4) 
and (5). The equation of uncertainty propagation is expressed by assuming that the covariance 
between the different parameters is null [45]. 

Using the dimensions uncertainties (Table 2) and the mass uncertainties (Table 3) 
discussed in section 3.2, the values of the uncertainty on the substrate density are calculated 
and presented in Table 3. Using the uncertainty of each quantity, the global uncertainty on the 
substrate Young’s modulus was calculated. In a similar way, the uncertainty of the coating 
Young’s modulus was calculated using the equation of uncertainty propagation for Ext-PM 
and Dev-CLBT. The uncertainty on Poisson’s ratio was assumed negligible in the present 
calculation. 

7. Results and discussion 

7.1. Microstructure 

Fig. 10 presents the X-ray diffraction patterns of the deposited titanium and niobium 
films. The presence of two phases: A body-centered cubic (bcc) metastable phase, known as 
β-Ti and a hexagonal closed packed (hcp) phase, known as α-Ti, can be clearly seen in the 
structure of the titanium film (Fig. 10a). These phases are classically observed on titanium as 
film [48] and as bulk material [58]. The presence of the metastable phase in the Ti film could 
be due to the deposition parameters [46, 59-61]. Contrariwise, the niobium film structure (Fig. 
10b) exhibits a bcc single-phase α structure, similar to several studies on Nb thin films [49, 
62-65]. 

a) 
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b) 

 

Fig. 10. X-ray diffraction patterns for different inclination angles: a) titanium film and b) 

niobium film. 

7.2. Measurement of resonant frequencies in multilayers 

Table 5 lists a summary of the resonance frequencies measured (average value) and 
the uncertainties for each layered system. The table presents the values measured on two 



25 

consecutive coatings of Ti and Nb deposited on AISI 316 (sample 1) and glass (sample 2) 
substrates under the same deposition parameters. An increase in f (n) is observed when each 
film is added. We can clearly see that the difference Δf in the measured frequencies before 
and after each deposition, is higher than their corresponding uncertainties, which gives the 
confidence to use them to determine the Young’s modulus of each film. We can clearly see 
that the contribution (in %) on the measured frequency decreases by taking a higher mode 
which presents a higher frequency. 

Table 5 

Flexural resonance frequencies of samples measured by IET before and after deposition. 

 

7.3. Determination of Young’s modulus in a three-layered beam 

Table 6 gives the Young’s moduli and uncertainties of different substrates obtained by 
IET using Eq. (5) for the fundamental frequency and Eq. (4) for the other frequency modes. 
The contribution of each uncertainty source is presented in Fig. 11 that corresponds to sample 
No. 1 (AISI 316). The measurements of the substrate’s thickness and density present the main 
contributions on the prediction of the substrate Young’s modulus E0. The global uncertainty 
and the various contributions are approximately the same for the first four frequency modes 
with percentages of 79 % and 20 % respectively, for the substrate thickness and density. Thus, 
a very precise and accurate measurement should be performed on the measurement of the 
thickness and the density of the substrate. 

Table 6 

Substrate Young’s modulus and its uncertainties. 

Mode 

shape 
Sample 

Flexural resonance frequency (Hz) 

Δf1=f1-f0 

(Hz) 

Δf2=f2-f1 

(Hz) 

u(f) 

Before 

deposition 

After first 

deposition 

After 

second 

deposition 

(Hz) % 

I 
1 (AISI 316) 534.54 537.12 537.90 2.58 0.78 0.117 

0.117 
0.02 

2 (Glass) 980.84 986.93 987.22 6.09 0.29 0.01 

II 
1 1481.98 1489.38 1491.70 7.40 2.32 0.147 0.01 
2 2712.05 2728.55 2729.43 16.50 0.88 0.147 5.4x10-3 

III 
1 2907.49 2922.14 2925.87 14.65 3.73 0.250 8.6x10-3 
2 5317.45 5351.86 5353.71 34.41 1.85 0.250 4.7x10-3 

IV 
1 4807.60 4832.67 4839.57 25.07 6.90 0.201 4.2x10-3 
2 8692.02 8743.18 8745.74 51.16 2.56 0.201 2.3x10-3 

Mode 

shape 

Sample IET 

 E0 u(E0) 

 GPa GPa % 

I 
1 (AISI 316) 200.47 2.33 1.16 

2 (Glass) 69.90 1.25 1.78 

II 
1 202.70 2.36 1.16 
2 70.24 1.26 1.79 

III 
1 203.01 2.36 1.16 
2 70.26 1.26 1.79 

IV 1 203.13 2.36 1.16 
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Fig. 11. Contribution of each uncertainty source (in %) on the AISI 316 substrate Young’s 

modulus uncertainty. 

In Tables 7 and 8, the Young’s modulus and uncertainty of the deposited Ti and Nb 
films were obtained using Pautrot’s, Dev-CLBT and Extended Pautrot’s (Ext-PM) models. 
The Young’s moduli are also obtained using nanoindentation. From Eq. (55) and the reduced 
modulus Er measured, the corresponding Young’s modulus and the uncertainty values were 
obtained. We can notice that the difference between the Young’s moduli increases with the 
frequency mode. The difference between the modulus determined from the first frequency and 
the higher frequencies may be due to the effect of shear and inertia. They were taken into 
account in the frequency equation of the first mode (Eq. (5)) using the correction factor, 
which is not the case in the frequency equation of the other modes (Eq. (4)). 

The Poisson’s ratios used in CLBT and Dev-CLBT models for the glass and AISI 
substrates, were respectively 0.187 [38,68] and 0.265 [67]. For titanium and niobium films, 
the Poisson’s ratios were respectively 0.36 [67] and 0.4 [66], which were taken from the 
literature for bulk behavior properties. Figs 12 and 13 present the frequency ratio as function 
of the ratio Rʋi=ʋi/ʋ0. We can conclude from these figures that there is no significant influence 
of the Poisson ratio on the determination of the Young’s modulus in flexural mode. 

2 68.70 1.23 1.79 
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a) b) 

    

Fig. 12. Comparison between analytical and numerical models for bilayer isotropic beam 
(substrate + film) with Rh1=0.3 and for different Young’s moduli, and density ratios: a) 

RE1=0.53, Rρ1=1.07, b) RE1=1.65, Rρ1=1.76. 

a) b) 

    

Fig. 13. Comparison between analytical and numerical models for a multilayer beam 
comprising three isotropic materials with Rh1=0.3, Rh2=0.1 and for different Young’s moduli 

and density ratios: a) RE2=0.53, Rρ2=1.07, b) RE2=5.7, Rρ2=7.5. 

For the first sample, the contribution on the Ti film Young’s modulus is in the order of 
4.6 GPa (4.4 %), 2.7 GPa (2.5 %), 2.5 GPa (2.3 %) and 2 GPa (1.8 %), respectively in mode I, 
II, III, and IV, approximately for the two models (Table 7). By passing from the first to the 
fourth mode, the resonant frequency of the system increases and its contribution decreases 
(Table 5). The frequency difference Δf increases by a factor of 10 from mode I to IV whereas 
the frequency contribution decreases by a factor of 5. Using the equation of uncertainty 
propagation for Pautrot’s and Dev-CLBT models, the uncertainty of Ti film Young’s modulus 
decreases. The same reasoning is applied to the second sample. 

For a three-layered system, the uncertainty of the Nb film Young’s modulus is in the 
order of 8 GPa (9 %), 5.4 GPa (5.8 %), 5 GPa (5.7 %) and 4 GPa (4.8 %) respectively in 
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mode I, II, III, IV with a slight difference between the two models, which was not the case for 
the bilayer beam. This difference appears starting from the second layer because of the 
difference in theory and the symmetry assumption of the laminated theory that can relatively 
disturb the results even if it was corrected by the shift of the neutral axis after deposition. The 
uncertainty of the second film Young’s modulus is higher than that of the first film. This can 
be due to the layering where the cumulating effect of the uncertainties of the two precedent 
layers (substrate and the first coating) contributes to the second film Young’s modulus. 

Table 7 

Young’s modulus of the first film of Ti obtained by IET and NI. 

Sample 
Mode 

shape 

First film (Ti) 

Pautrot  Dev-CLBT   NI 

E1  u(E1)  E1  u(E1)  E1  u(E1) 

GPa  GPa %  GPa  GPa %  GPa  GPa % 

1 (AISI 316) 

I 105.22  4.69 4.46  104.56  4.66 4.46  

- 

 

- - 
II 108.74  2.72 2.5  108.07  2.75 2.54   
III 109.55  2.54 2.32  108.87  2.55 2.34   
IV 112.11  2.06 1.84  111.41  1.98 1.77   

2 (Glass) 

I 105.28  2.81 2.67  102.62  2.82 2.75  

107.26 

 

2.89 2.7 
II 104.54  2.37 2.27  101.9  2.22 2.18   
III 108.45  2.4 2.21  105.72  2.4 2.27   
IV 100.31  2.18 2.17  97.77  2.17 2.22   

 

Table 8 

Young’s modulus of the second film of Nb obtained by IET and NI. 

Sample 
Mode 

shape 

Second film (Nb) 

Ext-PM  Dev-CLBT   NI 

E2  u(E2)  E2  u(E2)  E2  u(E2) 

GPa  GPa %  GPa  GPa %  GPa  GPa % 

1 (AISI 316) 

I 89.53  8.31 9.28  88.21  7.68 8.71  

- 

 

- - 
II 92.37  5.3 5.74  91.01  5.42 5.95   
III 87.74  5.01 5.71  86.45  4.91 5.68   
IV 90.42  4.38 4.84  89.09  4.09 4.59   

2 (Glass) 

I 82.64  5.89 7.13  79.35  5.76 7.26  

87.55 

 

3.87 4.42 
II 83.36  5.3 6.36  80.04  4.96 6.2   
III 83.78  5.37 6.41  80.44  4.9 6.09   
IV 81.11  4.98 6.14  77.89  4.52 5.8   

Figs. 14 and 15 present the contribution of each uncertainty source on the uncertainty 
of the Ti and Nb film Young’s moduli, respectively. They are calculated using the equation of 
uncertainty propagation for Ext-PM and Dev-CLBT models. As we can notice for both 
models, the measured density of the film, the substrate Young’s modulus and the two 
frequencies represent a high percentage contribution, which are the first to be improved. The 
Ti film Young’s modulus is added for the case of the three-layered system. The large 
contributions of the frequencies are related to the shift in the measured frequency before and 
after deposition. 
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Furthermore, we can clearly see that by increasing in mode, the contribution of the 
frequency on the film Young’s modulus decreases progressively. Once the contribution of the 
frequency decreases, the contribution of the other parameters (E0, E1, ρ1, ρ2, etc.) increases. 
These parameters are included in the equation of uncertainty propagation. 

Especially for a three-layered beam, the first film Young’s modulus uncertainty 
presents a significant effect for the determination of the second film Young’s modulus. It can 
reach 44 % and 27 % respectively for Ext-PM and Dev-CLBT models. The contribution on 
the Young’s modulus of a thin film becomes higher with the addition of several films. 

a) b) 

 
Fig. 14. Contribution of each uncertainty source (in %) on the first (Ti) film Young’s modulus 

given by: a) Pautrot’s model and b) Present model. 

a) b)

  
Fig. 15. Contribution of each uncertainty source (in %) on the second (Nb) film Young’s 

modulus given by: a) Pautrot’s model and b) Present model. 

The measured Young’s moduli of the substrates (Table 6) are coherent with the 
literature for AISI 316 [67] and glass substrates [21, 68]. The values of Young’s moduli of the 
titanium film presented in Table 7 varied from 97 to 112 GPa. The values published in the 
literature are highly dispersed: the values found in the present work are consistent with some 
of them [69-71] and differ from some others [27, 29]. Differences can be explained by 
microstructural features such as phase proportions [72] or the presence of pores or by the 
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process itself like in reference [28] where ions are implanted into the crystalline structure 
during the deposition process. 

The measured values of the niobium film Young’s moduli varied in the range of 77 ~ 
92 GPa (Table 8). These values are close to those reported in previous studies for a single 
layer of niobium [49, 62] and they are lower than those given in other studies [73]. This can 
also be due either to the presence of pores in the film or to the layering of different materials 
that can toggle the results and the prediction of the Young’s modulus of individual thin film in 
a multilayer system. We can conclude that both models can be used to determine the Young’s 
modulus of individual film in a multilayer system considering carefully the different 
uncertainty sources. 

8. Conclusion 

This work presents the development of new analytical models for the determination of 
the Young’s moduli of thin films in multilayer structures by means of the Impulse Excitation 
Technique (IET). The proposed models are based on two different theories (FRCB and 
CLBT). The comparison with the finite element model was performed to validate the 
developed models and to check the validity range of the other models. It was shown that both 
Extended Pautrot’s Model (Ext-PM) and the new one (Dev-CLBT) are recommended to 
determine the Young’s moduli of thin films whatever the coating thickness and the elastic 
properties of the films and substrate. 

Titanium (4.84 µm) and niobium (3.97 µm) thin films were sputtered on AISI 316, 
glass substrates and silicon wafers. The Young’s moduli of the deposited Ti and Nb films 
were determined using Pautrot’s and Dev-CLBT models. A good agreement was found 
between the obtained moduli and the values reported in the literature. However, some 
previous studies present values different from the measured ones. This difference might be 
due to the presence of pores in the two films. However, the presence of the metastable β-Ti 
phase in the titanium film can also alter the Young’s modulus of the titanium film. 

In the case of the studied material, the standard uncertainty on the substrate Young’s 
modulus comes mainly from the uncertainty on its thickness (79 % of the total uncertainty) 
and density (20 % of the total uncertainty). The main uncertainty sources on the first and 
second films Young’s moduli are the density of the two coatings, the Young’s modulus of the 
substrate, the Young’s modulus of the precedent coating, and the frequency before and after 
deposition. 

The measurement uncertainty of the IET represents about 1.1 % for the substrate 
Young’s modulus. The measurement uncertainties on the first and second films Young’s 
moduli are calculated as a function of the frequency mode. By increasing the vibrational 
mode, the measurement uncertainty decreases from about 4.4 % to 1.8 % for the first film and 
from about 9 % to 4.8 % for the second film. The increase of the measurement uncertainties 
with the addition of another film may be due to the accumulation of uncertainties from the 
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successive films. The measured values of the film Young’s modulus are lower than the bulk 
one; this might be due to the presence of pores in the as-deposited films. 

We are currently extending our study to evaluate macroscopically the anisotropic 
behavior of thin films. Compared to Ext-PM, Dev-CLBT model can take into account the 
anisotropy and will allow us to develop the vibrational technique (IET) in order to determine 
the anisotropic moduli of coating in different directions. 
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Figure Captions 

Fig. 1. Schematic representation of a multilayer beam. a) Free configuration of a multilayer 
beam. b) The z-coordinates of each layer in a cross-sectional view. 

Fig. 2. Schematic representation of the shift of the neutral axis: a) cross-sectional view, b) 
stress distribution in three-layer composite beam. 

Fig. 3. Schematic view of a symmetrical laminated beam. 

Fig. 4. Cross-sectional SEM image of the titanium and niobium films deposited on silicon 
substrate. 

Fig. 5. The natural frequency of the substrate (AISI 316), one layer coated substrate (Ti/AISI 
316) and the multilayer comprising three materials (Nb/Ti/AISI 316). 

Fig. 6. Deformed flexural vibrating beam: a) mode I, b) mode II, c) mode III and d) mode IV. 
The colors indicate the vertical displacement (mm). 

Fig. 7. Cross-section of FEM with the meshing configuration: a) Rh1 > 0.5, b) Rh1 ≤ 0.5. 

Fig. 8. Comparison between analytical and numerical models for bilayer isotropic beam 
(substrate + film) for different Young’s moduli and density ratios: a) RE1=0.17, Rρ1=0.14, b) 
RE1=2.07, Rρ1=2.41, c) RE1=3.56, Rρ1=8.28, d) RE1=18.98, Rρ1=13.6. 

Fig. 9. Comparison between analytical and numerical models for a multilayer beam 
comprising three isotropic materials for different Young’s moduli and density ratios: a) 
Rh1=0.004, RE2=0.26, Rρ2=0.44, b) Rh1=0.1, RE2=0.26, Rρ2=0.44, c) Rh1=0.004, RE2=3.56, 
Rρ2=8.28, d) Rh1=0.1, RE2=3.56, Rρ2=8.28, e) Rh1=0.004, RE2=18.68, Rρ2=1.9, f) Rh1=0.1, 
RE2=18.68, Rρ2=1.9. 

Fig. 10. X-ray diffraction patterns for different inclination angles: a) titanium film and b) 
niobium film. 

Fig. 11. Contribution of each uncertainty source (in %) on the AISI 316 substrate Young’s 
modulus uncertainty. 

Fig. 12. Comparison between analytical and numerical models for bilayer isotropic beam 
(substrate + film) with Rh1=0.3 and for different Young’s moduli, and density ratios: a) 
RE1=0.53, Rρ1=1.07, b) RE1=1.65, Rρ1=1.76. 

Fig. 13. Comparison between analytical and numerical models for a multilayer beam 
comprising three isotropic materials with Rh1=0.3, Rh2=0.1 and for different Young’s moduli 
and density ratios: a) RE2=0.53, Rρ2=1.07, b) RE2=5.7, Rρ2=7.5. 

Fig. 14. Contribution of each uncertainty source (in %) on the first (Ti) film Young’s modulus 
given by: a) Pautrot’s model and b) Present model. 

Fig. 15. Contribution of each uncertainty source (in %) on the second (Nb) film Young’s 
modulus given by: a) Pautrot’s model and b) Present model. 
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Table Captions 

Table 1 

Summary of the analytical models. 

Table 2 

Average dimensions and measurement uncertainty. 

Table 3 

Mass and density with the measurement uncertainty. 

Table 4 

Uncertainty on the first four resonance frequencies. 

Table 5 

Flexural resonance frequencies of samples measured by IET before and after deposition. 

Table 6 

Substrate Young’s modulus and its uncertainties. 

Table 7 

Young’s modulus of the first film of Ti obtained by IET and NI. 

Table 8 

Young’s modulus of the second film of Nb obtained by IET and NI. 




