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An Experimental-numerical Study on the Plastic Flow 

Localization Based on a Generalized Micromorphic Formulation 

 E. Diamantopoulou, C. Labergere, K. Saanouni,
 
B. Guelorget, M. François 

Abstract 

An experimental-numerical study based on simple plane strain tensile tests of a high strength metallic sheet is 

presented. The development of an 'advanced' modelling of multiphysic thermomechanical coupling in the 

framework of the generalized continuum mechanics (micromorphic theory) is already proposed in published 

works in  order to introduce the concept of internal lengths that are representative of the material’s 

microstructure while accounting for the various initial and induced anisotropies under large plastic strains. 

These internal lengths have to be experimentally determined from accurate measurements of highly localized 

displacement/strain (or velocity/strain rate) fields by using advanced methods to measure the kinematic fields at 

the relevant scales. We seek to locally measure the displacement and velocity fields in order to access to the 

local strain/strain rate fields inside the localized zones. Attention is paid to the prediction of the plastic flow and 

damage localization into narrow shear bands (localized necking) which  follows the diffuse necking stage. The 

effect of the micromorphic material properties which define the intrinsic characteristic internal length on the 

evolution of these highly localized shear bands regarding the mesh size is deeply investigated. The numerical 

work is based on an advanced numerical methodology developed for metal forming simulations including 

thermodynamically-consistent nonlocal constitutive equations accounting for various fully coupled mechanical 

phenomena under finite strains in the framework of the micromorphic continua. The numerical implementation 

into ABAQUS/Explicit software is made thanks to VUMAT user’s subroutine for the implementation of the 

micromorphic constitutive equations and the VUEL user’s subroutine for 2D quadrilateral assumed strain 

elements with an additional micromorphic degree of freedom related to the micromophic damage. 

1 Introduction 

Nowadays, the fully local constitutive equations have been well established to model the induced material 

softening behaviour due to thermal, damage and other microstructure-dependent phenomena. However, the 

solutions of the associated fully local initial and boundary value problem are highly sensitive to the space and 

time discretization. The mechanics of generalized continua makes possible the straightforward introduction of the 

characteristic lengths into the constitutive equations of materials with microstructure in order to overcome this 

drawback (Saanouni and Hamed, 2013).   

The most recent and comprehensive review of these generalized continua and their use to solve various problems 

in mechanics of solids and fluids is found in the books by Eringen (Eringen, 1999; Eringen, 2002; Forest, 2006; 

Saanouni, 2012). Based on these works, various generalized continuum theories have been introduced during the 

last decades in order to account for some effects of characteristic lengths related to the materials microstructure 

and leading to a wide range of models (Sidoroff, 1975; Maugin, 1979; Aifantis, 1987; Forest et al., 2002; 

Aifantis, 2003; Forest and Sievert, 2003; Liebe et al., 2003; Anandet. et al, 2005; Kirchner and Steinmann, 2005; 

Forest, 2006; Forest and Sievert, 2006; Forest, 2008; Forest, 2009; Hirschberger and Steinmann, 2009; Forest 

and Aifantis, 2010 among many others). 

As summarized by Forest, all these generalized continuum theories, which are still based on the assumption of 

local action (Truesdell and Noll, 2004), can be classified into two classes: (i) the higher grade continua and (ii) 

the higher order continua. Higher grade continua are those based on higher order spatial derivatives of the 

displacement field as originally proposed by Mindlin (Mindlin, 1965; Mindlin and Eshel, 1968). While, higher 
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order continua are based on the introduction of additional degrees of freedom as pioneered by the Cosserat 

brothers (Cosserat, 1896, 1909, 2009) and extensively developed by Eringen and his co-workers in 1960s 

(Eringen and Suhubi, 1964; Eringen, 1966a, 1966b, 1970, 1999). A third class of generalized continuum theories 

is the so called strictly nonlocal continuum field theories, well summarized in the recent book by Eringen 

(Eringen, 2002) where a unified foundation of the basic field equations are presented and various main 

contributing works in the field are referenced. 

Figure 1. Schematics of the different theories in the mechanics of continuous media, Saanouni, (2012) 

The micromorphic theory was initially proposed simultaneously by (Eringen and Suhubi, 1964; Mindlin, 1964). 

It consists of introducing a general non-compatible full field of micro-deformation as an extra degree of freedom, 

in addition to the classical displacement field. The micromorphic approach can, in fact, be applied to any 

macroscopic quantity in order to introduce a characteristic length scale in the original classical continuum model 

in a systematic way, as presented by (Saanouni and Hamed, 2012; Forest, 2009). From the comparison between 

nonlocal and micromorphic theories, Forest and Aifantis (Forest and Aifantis, 2010 ) concluded that when the 

micromorphic variable remains as close as possible to the plastic strain, the micromorphic model reduces to the 

strain gradient theory. 

The main goal of this paper is to propose a methodology for the identification of the internal length related to the 

micromorphic damage. According to the analytical-experimental study described later, an experimental-

numerical study is performed in order to determine the values of H
(

and gH
(

and verify the characteristic length 

for each material and mesh size in total agreement with the experiments and the information extracted by Fig. 8.  

The concept of internal lengths, that has to be experimentally determined from accurate measurements by using 

advanced photomechanical methods, is introduced. 

From the numerical point of view, the introduction of the new balance equation in the micromorphic model 

carrying the effect of the ductile damage, demands the construction of an element based on an assumed strain 

formulation combined with an extension of the Hu-Washizu mixed variational form. The standard B matrix 

obtained from the displacement field analytically and including the hourglass control part, is projected to 

eliminate volumetric and shear locking phenomena.  

This kind of micromorphic elastoplastic constitutive equations with damage can be later used for the numerical 

simulation of various sheet and bulk metal forming processes. 
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2 Theoretical Aspects 

2.1  The generalized Principle of Virtual Power 

The virtual power of internal forces is extended for a micromorphic continuum by using the virtual micromorphic 

damage (Saanouni, 2012; Saanouni and Hamed, 2013): 

( ) ( )( )*
* * * *

int , :
V

P u d u Yd Y d dVσ= − ∇ + + ⋅∇∫
rr( ( (( (r r & && (1) 

where, σ  is the Cauchy stress tensor, the scalar Y
(

 and vector Y
r(

 are the stress-like variables with respect to 

micromorphic damage d
(

 and its first gradient d∇
r (

. 

Similarly, the virtual power of external forces is also extended by adding the generalized body forces uf
r

, df
(

, 

gdf
(r
and the contact forces uF

r
and dF

(

associated with the kinematic variables and their first gradients: 

( ) ( ) ( )* * * * * * *
,

u d gd u d

ext

V

P u d f u f d f d dV F u F d dSρ
Γ

= ⋅ + + ⋅∇ + ⋅ +∫ ∫
( ( (r r r r( ( ( (r r r& & && & (2) 

The virtual power of the inertia forces is enhanced by a new micromorphic contribution according to: 

( ) ( )* * * *
,a d

V

P u d u u dd dVρ ζ= ⋅ +∫ (

( ((r r r &&&&& & (3) 

where, 
d

ζ (  is a scale factor which maps the local material density to the micromorphic level (Nedjar, 2001; 

Saanouni, 2012; Saanouni and Hamed, 2013). 

For any kinematically admissible virtual fields, the generalized micromorphic virtual power is written under the 

following form: 

* *

int
, . .

ext a
P P P u d K A+ = ∀

(r
(4) 

By using Eq. (1) - Eq. (3) and using the divergence theorem to transform the volume integrals, Eq. (4) leads to 

two balance equations together with their Neumann boundary conditions. The first one is the standard and well 

known local balance of momentum: 

u

u

f u in

n F on

σ ρ ρ Ω

σ Γ

∇ ⋅ + =


⋅ =

rr r&&
rr (5a) 

and the second one is an additional generalized micromorphic balance of momentum:  

( ) ( )
( )

d gd

d

gd d

Y Y f f d in

Y f n F on

ρ ρζ

ρ

 ∇ ⋅ + + −∇ ⋅ = Ω

 − ⋅ = Γ


( (

(

( (

r rr r (( ( &&

r r( r
(5b) 

These two partial differential equations are considered as the strong forms of the Initial and Boundary Value 

Problem (IBVP) with respect to displacement and micromorphic damage fields. The stress-like variablesσ , Y
(

and Y
r(

 will be defined by the state relations developed in the framework of thermodynamic of irreversible 

processes with appropriate state variables. 

2.2 State Relations 

In this section, a specific state potential is constructed for an isothermal isotropic elastoplastic model fully 

coupled with isotropic local damage, local isotropic and kinematic hardenings and isotropic micromorphic 

damage. The effective state variables are deduced from the local state variables according to the assumption of 

the total energy equivalence developed in (Saanouni et al., 1994; Saanouni et al., 2008; Saanouni and Hammi, 
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2000; Labergère et al., 2011; Issa et. al, 2012; Saanouni and Hamed, 2013; Badreddine et al., 2015). We assume, 

as for a classical local continuum, that the energy balance holds for a micromorphic medium of order one.  For 

the sake of simplicity, we also postulate that only the local damage is coupled with the micromorphic damage. 

Under these assumptions, Helmholtz free energy can be expressed as a closed convex function of the overall 

(both local and micromorphic) strain-like state variables: 

( ) ( ) ( )( )2
21 2 1

1 : : : 1
2 3 2

e e g
d C d Qr H d d H d d

γρψ ε ε α α
 = − Λ + + − + − + ∇ ⋅∇ 
 

r r( ( (( (
(6) 

where 1 1 2 1
e e
λ µΛ = ⊗ +  is the positive definite symmetric fourth-rank elastic tensor defined by the classical

Lame’s parameters. C  and Q  are the macro moduli of the kinematic and the isotropic hardening respectively. 

H
(

 is the coupling modulus with respect to the micromorphic damage while gH
(

is the micromorphic modulus 

related to the micromorphic damage first gradient. Finally, γ  is the parameter governing the effect of the local 

damage on the local isotropic hardening. 

The local and micromorphic stress-like variables are derived under the following forms: 

( ) ( ) ( )( )1 : 1 1 2e e e

e ee
d d tr

ψ
σ ρ ε λ ε µ ε

ε

∂
= = − Λ = − +

∂
(7) 

( )2
1

3
X d C

ψ
ρ α

α

∂
= = −

∂
                          (8)  

( )1R d Qr
r

γψ
ρ
∂

= = −
∂

(9) 

( )1 21 2
: : : ( )

2 3

e e e r
Y C d Qr H d d Y Y Y Y

d

γ αψ
ρ ε ε α α γ −∂  = − = Λ + + − − = + + + ∂  

(( (
(10) 

( )Y H d d
d

ψ
ρ
∂

= = − −
∂

(( (
( (11) 

gY H d
d

ψ
ρ

∂
= = ∇

∂∇

r r (( (
r ( (12) 

The damage dual stress-like force given in Eq. (10) can be decomposed into local part and coupled nonlocal part 

with the help of the micromorphc state relations Eq. (11) and Eq. (12): 

( )

1 21 2
: : :

2 3

loc nloc

e e

loc

nloc

Y Y Y

Y C d Qr

Y Y H d d

γε ε α α γ −

 = +
  = Λ + +  

 
 = = − −

(( (

(13) 

It is worth noting that if the micromorphic effects are neglected, i.e., 0gH H= =
( (

, the micromorphic state 

variables given by Eqs. (11) - (12) are zero leading to zero contribution of the nonlocal terms. In that case the 

classical fully coupled local state relations originally given in (Saanouni, Forster, Benhatira, 1994; Saanouni, 

2012) are integrally recovered. 

2.3 Evolution Equations 

 

The intrinsic dissipation remains under a purely local form without the direct contribution of any micromorphic 

phenomenon since we assume that the micromorphic variables do not dissipate. This assumption is made mainly 

due to the absence of any experimental information about the dissipation of the micromorphic phenomena. 

Since there’s no micromorphic damage dissipation, to account for the damage effects, we limit ourselves to the 

isotropic plasticity for simplicity. The von Mises yield function and dissipation potentials used in (see Saanouni, 

et al., 1994, 2008; Saanouni and Hammi, 2000; Labergère et al., 2011; Issa et. al, 2012; Saanouni and Hamed, 

2013; Badreddine et al., 2015) are considered: 
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( ), , ; 0
1 1

y

X R
f X R d

d d γ

σ
σ σ

−
= − − ≤

− −
                                         (14) 

( )
( ) ( ) ( )( )

( )12

03 : 1
, , ,

4 1 2 1 1 1

s
Y YaX X bR S

F X R d f
C d SQ d s d

βγ
σ

+
−

= + + +
− − + −

(15)       

where, ( )3 2 ( ) : ( )
dev dev

X X Xσ σ σ− = − − defines the well-known von Mises equivalent stress and 
devσ  is 

its deviatoric part of the stress tensor. The parameters α  and b  reflect the nonlinear property of the kinematic 

and isotropic hardening respectively and S , s  and β  characterize the nonlinear evolution of the ductile damage. 

Clearly, the yield function and plastic potential are identical to the local theory. However, the indirect 

contribution of the micromorphic state variables is introduced from the state relations. Applying the generalized 

normality rule to the above defined local yield function and dissipation potential lead to the following evolution 

equations: 

1

p F
D

n
n

d
λ λ λ

σ

∂
= = =

∂ −
& & &%& (16) 

1

F n

X
a

d
α λ λ α

∂  
= − = − ∂ − 

& &&         (17) 

1

1
br

F
r

R d γ
λ λ

 
−  −

∂
= − =

∂  
& && (18) 

0
( )

(1 )

s

loc nloc
Y Y YF

d
Y Sd β

λ
λ

 + − ∂
= =  

∂ −  

&
& & (19)  

where 
f

n
σ

∂
=
∂

 is the outward normal to the yield surface  in the rotated stress space and 
f

n
σ

∂
=
∂

%
%

 is the same 

normal but expressed in the effective rotated stress space. The plastic multiplier λ& appearing in all the evolution 

equations given above is deeply affected by the micromorphic variables linking it to a nonlocal nature. 

In this case of time independent plasticity, λ& is classically deduced from the consistency condition applied to the 

yield function (Eq. (14)): ( ), , ; 0f X R dσ =& if ( ), , ; 0.f X R dσ =  However, this is not necessary since the plastic

miltiplier will be compluted numerically at each integration point in order to ensure the plastic admissibility 

condition. 

The plastic multiplier λ&  appearing in all the evolution equations is deduced from the consistency condition 

applied to the yield function Eq.(14): ( ), , ; 0f X R dσ =&  giving the following closed form expression:

( )1
1 : :

p

d n D
H

λ = − Λ& (20) 

 where, pH  is the generalized elastoplastic hardening modulus. 

2.4 Transformation of the Micromorphic Balance Equations 

Considering the generalized balance equation of micromorphic momentum Eq. (5b), it can be easily expressed in 

strain-like variables space by using micromorphic state relations Eq. (11) and Eq. (12): 

( ) ( )( ) ( )
( )( )

g d gd

D

g gd d

H Lap d H d d f f d in

H d f n F on

ρ ρζ Ω

ρ Γ

 − − + −∇ ⋅ =

 ∇ − ⋅ =


( (

(

( (

rr( ( (( ( &&

rr (( r
(21) 
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By neglecting the micromorphic body and contact forces, i.e. 0df =
(

, 0gdf =
(r

and 0dF =
(

, the above equation 

can take the following form: 

( ) ( )

( )( )

2

0

d

d

g

l Lap d d d d in
H

H d n on

ζ
ρ Ω

Γ


+ − =


 ∇ ⋅ =


(

(( ( (&&
(

r (( r
(22) 

where, 
d

l (  is the intrinsic internal length scale parameter related to the micromorphic damage defined as square 

root of the ratio of the two micromorphic moduli: 

g

d

H
l

H
=(

(

( (23) 

Eq. (22) is preferred to be used as the strong form from which the associated weak form will be deduced right 

after in order to solve the fully coupled IBVP. If the micromorphic damage inertia is neglected (i.e., 0
d

ζ =( ) in

the micromorphic damage balance equation, leads to the well-known Helmholtz equation proposed in the 

framework of the so called implicit nonlocal damage formulation proposed in (Engelen et al., 2003; Geers, 2004; 

Geers et al;, 2003). 

3 Numerical Aspects 

In this section, an advanced numerical procedure is presented. The finite element code that is used to implement 

the micromorphic model is developed in ABAQUS
®
. This numerical approach consists of: (i) the global 

resolution of the two balance equations (i.e. classical mechanical and micromorphic damage equilibrium 

equations) and (ii) the local integration of the overall fully coupled constitutive equations on each integration 

point of each element, which is necessary to calculate the internal forces appearing in the weak forms associated 

to the balance equations.  

The numerical integration, mixed for one/four quadrature(s) (or Gauss) points for all the coupled constitutive 

equations, is necessary in order to compute the stress tensor and the overall stress-like internal variables 

appearing in the weak forms. The local integration algorithm consists of discretizing all the constitutive equations 

through the time interval 1n n nt t t t t+≤ ≤ = + ∆  and calculating the values of all the mechanical fields at the end of

the increment 1nt +  while the loading increment  1ntDε +∆ = ∆  as well as the values of all the fields at the 

beginning of the time increment nt  are known. For the time discretization of the equations of this behavior 

model, the fully implicit (iterative) Euler scheme in combination with an asymptotic one applied to the hardening 

equations are chosen (Saanouni, 2012). The overall constitutive equations are then reduced to two nonlinear and 

strongly coupled algebraic equations with two unknowns: λ∆ and
1n

d + . For each integration point concerned by 

the plastic flow, the iterative method of elastic prediction-plastic correction is used to integrate numerically the 

complete set of constitutive equations thanks to a Newton-Raphson resolution procedure in order to converge 

towards a point lying on the current loading surface. The constitutive equations defined in the framework of the 

micromorphic continua are implemented into ABAQUS®/Explicit thanks to the VUMAT user’s subroutine. 

An element with the additional micromorphic degree of freedom concerning the micromorphic damage is 

implemented using the VUEL user’s subroutine as discussed here after.  

The introduction of the new micromorphic balance equation in the behaviour model with micromorphic damage 

demands the construction of a special element based on a mixed variational form and having d
(

 as the additional 

degree of freedom (d.o.f). Fish and Belytschko (Belytscho, 2000) proposed an extension of the Hu-Washizu 

weak form of the variational principle in nonlinear mechanics of solids. We consider two variational forms and 

introduce the balance equation with the contribution of the micromorphic damage discretized on a domain Ω. 

The weak form of the balance equations can be obtained thanks to the weighted residual method (Belytscho, 

2000) in order to get: 
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( )( )

( ) ( )2

: : 0

( ).( ) 0

sym

a a a a ext

d

d u d W

d d d d d d d d

σ δε δ σ ε δ

δ δ δ

Ω Ω

Ω Ω

 Ω+ ∇ − Ω− =



+ ∇ ∇ Ω− Ω =


∫ ∫

∫ ∫

r r

r r( ( ( ( (
l

(24) 

where 
extWδ   is the external forces virtual work, δ represents the classical variation operator, u

r
 is the 

displacement vector,  σ  the Cauchy stress tensor, aε  the tensor of the assumed strains, aσ  the assumed stress 

tensor and ( )s
u∇
r

 is the symmetric part of the displacement gradient. Simo and Hughes (Simo and Hughes, 

1998) suggested the the projection of the discretized gradient  
1

2

e

n
B

+
 
  

 of the velocity field. This new operator is

chosen in order to evaluate the assumed strain tensor { } { }1 11 2 2

a e e

nn n
B uε

++ +

 =   
 and to compute the associated 

assumed stress tensor { }1

a

n
σ + which is orthogonal to the difference between the symmetric part of the velocity 

gradient and the assumed strain tensor. This choice allows us to simplify the Hu-Washizu weak form as follows: 

( ) ( )2

: 0

( ).( ) 0

a a ext

d

d W

d d d d d d d d

σ δε δ

δ δ δ

Ω

Ω Ω

 Ω− =



+ ∇ ∇ Ω− Ω =


∫

∫ ∫
r r( ( ( ( (

l
(25) 

Wang (Wang et al., 2006) proposed the construction of a quadrangular element to the field of the assumed strains 

in a 2D plane strain in order to control the shear and volumetric locking. The isoparametric shape functions for 

the 4-node quadrilateral can be written in terms of a set of orthogonal base vectors as: 

( ) 1 1 1 1
, +

4 4 4 4
iN ξ η ξ η ξη= + +s hξ η (26) 

where ( ),ξ η  are the coordinates in the reference space with [ ]1,1,1, 1
T = − −ξ  ,

[ ]1, 1,1, 1
T = − − −η , s  is the translation vector with [ ]1,1,1,1=s  and h is the hourglass vector with

[ ]1, 1,1, 1= − −h .

Figure 2. A 4-node quadrilateral element in physical and natural coordinate systems, Wang (2004) 

To this element we have added the degree of freedom associated to the micromorphic damage. In order to 

avoid any objectivity-related problems, a local corotational system is built in the centroid of the element (see 

Fig.3) using the shape functions defined in the reference space ( , )ξ η . The orientation of this corotational 

triad is governed by the orthogonal rotation tensor Q  which is expressed under the following form: 

[ ]
1 2

1 1 1

1 1 2 1 21 2

12 2

, , , . 0, 1
e e gx x

Q g x y e e e e
ge e ξ η

  ∂ ∂
= = + = = = 

∂ ∂ 

r
r r r r r r r

r (27) 
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Figure 3. Corotational definition of the Q4-URI element, Wang, (2004) 

The matrix 
1

2

e

n
B

+
 
  

is decomposed in two parts: 0

1
2

n
B

+
 
  

 which is constant and gives all the components of the 

strain tensor { }
1

a

n
ε

+
 in the centre of the element, and ( )1 1 1

2 2 2

,h

n n n
B B Bξ ηξ η ξ η

+ + +
     = +          

for the components of the

same tensor at the rest points of the element. The operators ( ),B B
ξ η

 are called anti-hourglass strain matrices and 

are implemented in order to suppress the hourglass modes. Those high order terms can also be modified for the 

elimination of volumetric and shear locking phenomena.  

Finally, the expression of the total strain tensor, according to the assumptions above, is written as follows:   

{ } { } { }
{ }

{ }
{ }

{ } { }
0

1 1

0 0

1 1 11 1 11 1 12 2 22 2 2

h

n n

a e e e h e h

n n nn n n n n n

D D

B u B u B uε ε ε

+ +

+ + ++ + + + + +

     = = + = +          1442443 1442443

     (28) 

4 Experimental Aspects 

The study of the strain localization behavior from an experimental perspective using photomechanical methods is 

introduced. Electronic Speckle Pattern Interferometry (ESPI) has been used for the deformation measurement, 

because of its specific advantages, such as high spatial and displacement resolutions.  
The principles of ESPI are simple: a speckle field, e.g. a seemingly random intensity pattern, is produced by the 

interference of the wave fronts, when a coherent light illuminates a rough diffusing surface. A micro-

displacement or deformation of the object surface leads to changes of the speckle field and thus the deformation 

information can be obtained from the correlated evolution of the initial speckle pattern (Labergere et al., 2014, 

Guelorget et al., 2006). The experimental setup is represented in Fig. 4. 

Figure 4. Experimental set-up: in-plane speckle interferometry. The laser beam path is schematized as 
a red line, (Bao, François, Le Joncour, 2015) 

The specimens on which the tests were performed are made of steel 430 (X8Cr17) with effective length of 45 

mm, width of 15 mm, and thickness of 0.2 mm, and cut along 45° with respect to the rolling direction (Fig. 5). 

The specimen was set in the tensile machine with the bottom clamp fixed, the top clamp lifted under controlled 

speed, which was kept constant at 0.5 mm/min in the early stage and decreased to 0.015 mm/min near and 
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beyond to the maximum load to observe precisely the state of localization. It should be pointed out that the 

tensile test evolution is monitored through the average total strain computed from the cross-beam displacement 

and the initial gauge length of the specimens as ln(L/L0).  

Figure 5. Specimen geometry and reference system 40x11mm (300 x 300 DPI) 

The fringe patterns shown in Fig. 6 represent the displacement field increment between the capture of two phase 

maps separated by the duration indicated besides each picture. Constant and homogenous strain appears as a 

uniform fringe pattern in which fringes are straight and perpendicular to the tensile direction. So in the elastic and 

homogenous plastic deformation range, there is no change in the fringe pattern appearance. As soon as the plastic 

deformation becomes inhomogeneous, the fringes start to curve, with a non-uniform spacing, and concentrate in 

the middle of the specimen forming an hourglass shape which can be interpreted as two crossing localization 

bands, as can be seen in Figs. 6 and 7. 

This hourglass shape narrows progressively and, around 23% average strain, turns into an “X” shape. The fringe 

spatial frequency is higher in the middle of the specimen than along the two edges of the specimen which means 

that the strain is higher in the middle. In the area outside the “X”, where there is no fringe, the material stops 

deforming plastically and undergoes elastic unloading when the force decreases. At the beginning of the 

localization, the hourglass shape is symmetric, and then it loses the symmetry when it turns into an “X”. Then the 

fringes (deformations) start to concentrate in one of the bands (or one of the branches of “X”), thus the other one 

tends to disappear gradually and finally the specimen breaks along the band left. The transition between the 

symmetric hourglass and the asymmetric “X” is interpreted as the onset of localized necking.  

The localized necking stage can be divided into two sub-stages, one where the disappearing band is still active 

and another where it disappears (Fig. 6). 

Figure 6. Evolutions of the fringe patterns (top row) obtained by ESPI and the corresponding strain 

rate maps (bottom row) during the reference test. 

For extracting global information and physically relevant parameters, the strain rate pattern is modeled assuming 

that the strain rate field is a system of two straight crossing bands based on the “X” shape of the fringe pattern. 
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The strain rate distribution along each band is supposed to be constant. The whole strain rate distribution is 

assumed to be a simple superposition (sum) of the strain rate distribution of these two bands. This model is not a 

mechanical model but a purely geometric model used to describe the strain rate pattern and extract global 

parameters and completely independent of the constitutive behavior of the material. The strain rate distribution in 

each band is described by a linear combination of a Gaussian and a Lorentzian function: 

max max

1 1 1 1 1 2 2 2 2 2( , ) ( (1 ) ) ( (1 ) )xx x y G L G Lε ε η η ε η η= + − + + −& & &        (29) 

where i = 1 or 2 indicates one of the two localized bands, and (x, y) are the coordinates of the points (x is parallel 

to the tensile direction), with: 

• max

i
ε&  is the maximum strain rate, 

• ,
i

G  Gaussian function, 

• ,
i

L  Lorentzian function, 

• 
i

η  and 1
i

η−  are the weights of  the Gaussian and the Lorentzian functions respectively. 

The Gaussian and Lorentzian functions are defined as following: 

2
( , , , , ) exp( ( ) )

x ay b
G a b B x y

B
π

− −
− (30) 

2

1
( , , , , )

1 ( )

L a b B x y
x ay b

B
π

=
− −

+
(31) 

• ,α  the inclination of the band with respect to the transverse direction,

• ,b  the location of the band,

• ,B  the integral width of the band.

Figure 7. Illustration of the parameters, the image on the left is a fringe pattern and that on the right is 

the corresponding strain rate map obtained. 

The inclination angles of the bands are defined as the angles between the band length and the tensile direction. 

The parameters of the model are identified by a least squares fitting procedure from the velocity maps obtained 

by ESPI. 

The obtained evolution of the strain rate map is shown on Fig. 8 for a test at 0.015 mm/min. The evolutions with 

the global average strain of the widths of the bands are shown. In all cases, the specimens failed in the same 

direction, along the band that was oriented almost perpendicular to the rolling direction or along band 1 as 

illustrated in Fig. 7. Thereby for the sake of simplicity, this band will be called dominant band and the other one 

disappearing band, and the superscript “dom” and “dis” will be used to distinguish them.  

On the strain rate maps evolution, the observations made on the fringe patterns are clearer. In a first stage, the 

maps exhibit a symmetric hourglass shape. In a second stage, defined as the localized necking, one band starts to 

predominate and the shape turns into an asymmetric “X” shape. The strain rate in the dominant band increases 

progressively until fracture. 

The maximum strain rate of the banddom increases exponentially with cross-beam displacement while the 

maximum strain rate of banddis increases slowly and even starts to decrease close to the end of the test. During 
diffuse necking, the hourglass pattern formed by the two bands is symmetric and the maximum strain rates of the 

two bands are equal. Then, the strain rate of the two bands starts to diverge. 
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The bandwidths B of the two bands, in all cases, decrease with the total average strain or time. At the beginning, 

the two bandwidths decrease simultaneously and then they separate: B
dis

 tends to stabilize while B
dom

 continues 

decreasing.  

Figure 8. Evolutions of the localization bands widths vs total average strain (or time) 

The bands widths of the two bands decrease at a similar rate during the diffuse necking. Then, when the localized 

necking stage starts, the width of the dominant band continues decreasing until the rupture, while the width of the 

disappearing band continues to decrease for a while and then stabilizes. Based on this observation, which is 

consistent with the strain rate evolutions, two sub-stages are distinguished in the localized necking regime. The 

transition of these two sub-stages is defined as the stabilization of the disappearing band width. 

5 Numerical Results 

5.1 Parametric Study of the Micromorphic Model 

In this section we present a brief parametric study of the micromorphic model and more particularly the effect of 

the two parameters ( , )gH H
( (

 related to the micromorphic damage and the mesh size. We examine the role of 

each one of these two parameters on the quality of the numerical solution in terms of the force-displacement 

curves and the damage distribution in the totally damaged area. For this, we use the Q4 micromorphic elements 

described above, implemented in ABAQUS®/Explicit thanks to the VUEL user’s subroutine and we compare the 

numerical results with those provided by the experiments. 

Figure 9. Geometry and mesh of the tensile specimen (Nnodes: 7502, Nelements: 7367) 

The local parameters of the model are given in Table1 below.   

E 

(GPa) 
ν  yield 

(MPa) 

Q 

(MPa) 

b C 

(MPa) 

a ST DC s β

(N) (MPa) 

220 0,3 300,0 1135,

0 

2,0 3400,0 40,0 5,0 0.99 1,0 1,0 ? ? 

Table. 1: Material paremeters 

In this case, all the phenomena are supposed to be local and only the damage is supposed to be micromorphic, 

giving one additional degree of freedom apart from the displacement, and one more balance equation. We also 

note that there is only one internal length related to the micromorphic damage which is taken into consideration 

given by Eq. (22). 
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For the first test case, we kept the internal length constant at 0,6
d

mm=(l  by picking three different pairs of the 

micromorphic moduli, e.g., ( 10, 3,6)gH H= =
( (

, ( 100, 36)gH H= =
( (

and ( 1000, 360)gH H= =
( (

while keeping 

the mesh size 0, 2msh mm=  for the three tests.

 

Figure 10. Comparison of the force-displacement curves for the three different couples ,
g

H H
( (

 

Figure 11. Damage isovalues of the ruptured specimen in the framework of the local continua 

12,3
rupt

U mm=

13,3
rupt

U mm=

no final crack
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From Fig. 10 we can note that H
(

 has a preponderant effect on the elongation of the fructure. The bigger the 

value of H
(

is, the more the rupture is delayed. In fact, 12,3
rupt

U mm= for 10,H =
(

13,3
rupt

U mm= while we do 

not achieve any final rupture for the extremely high value of 1000H =
(

due to the strong localized necking. 

Relatively low values of H
(

give micromorphic responses close to the local one. This can be explained by the fact 

that 
nloc

Y  is directly proportional to H
(

in a way that low values of H
(

lead to low values of 
nloc

Y .   

Consequently, the most important parameter which influences the material ductility is the micromorphic modulus 

H
(

which directly governs the damage energy release rate while the value of the modulus gH
(

  affects the 

material ductility with a small amount by equally delaying the rupture displacement. 

For the second test case, the effect of the mesh size is investigated. We keep the value of the internal length 

0,6
d

mm=(l by choosing this couple of the micromorphic moduli ( 100, 36)gH H= =
( (

and we perform the 

simulation for two different mesh sizes 0, 2msh mm=  and 0,4 .msh mm=

Figure 12. Comparison of the force-displacement curves for the two different mesh sizes. 

 

Figure 13. Damage isovalues of the ruptured specimen for the two different mesh sizes. 

4msh mm=

2msh mm=
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The corresponding results in terms of the damage distribution are plotted for the three mesh sizes in Fig. 13 From 

these figures it is clearly observed that the damage gradient is located inside a wide shear band. The force-

displacement curve gives the same fracture displacement value rupt
U ≈ 13,3mm as shown in Fig. 12. However,

we observe a slight difference between the three results in the softening phase. This difference can be explained 

by the need to introduce a micromorphic variable associated with the isotropic hardening in order to enhance the 

regularization at this stage (Saanouni and Hamed, 2013).  

On the other hand, we can see that the orientation of the crack can be affected by the mesh size, something that 

poses difficulties to distinguish the dominant from the disappearing bands for the identification procedure 

discussed hereafter.   

6 Identification Methodology 

As mentioned in the fourth section above, generalized continua schemes introduce additional parameters that 

need special treatment for their identification. One of these is the internal length related to the micromorphic 

damage. Since ESPI allows the identification of the physical characteristics of the localization, such as 

bandwidths, band orientations and maximum strain rates of the bands at any moment of the necking, one first 

attempt is done under the idea of ‘linking’ the notion of the micromorphic internal length to the one of the 

bandwidths in order to give it some physical meaning and propose a numerical methodology to identify it. 

In this spirit, and by numerically implementing the mathematical model given by Eqs. (26)-(28) and calculating 

the numerical strain rate at a given time ( ), ,num

xx x y tε&  at each Gauss point of an element located in the central

zone and, we manage to extract the values of the numerical bandwidth B
dom

 during the diffuse and the localized 

necking and compare the numerical results with the experimental ones shown in Figure 8.  

 We manage to extract the values of the integral bandwidths during the diffused and the localized necking and 

compare the numerical results with the experimental ones shown in Fig. 8, first for the three different couples of 

the micromorphic moduli, ( 10, 3,6)gH H= =
( (

, ( 100, 36)gH H= =
( (

and ( 1000, 360)gH H= =
( (

and after for the 

two different mesh sizes 0, 2msh mm=  and 0,4 .msh mm=

Let us note that since the micromorphic isotropic hardening is not taken into account for this work, we proceed 

only to the identification of the internal length of the micromorphic damage and we associate to the dominant 

band named B
dom 

leading to the final rupture. 
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Figure 14. Evolution of the localization dominant band for a fixed mesh size, numerical-experimental comparison 

for ( 10, 3,6)gH H= =
( (

, ( 100, 36)gH H= =
( (

and ( 1000, 360)gH H= =
( (

Fig. 14 shows the numerical results obtained for the three pairs of the micromorphic moduli related to the 

micromorphic damage and its first gradient, ( 10, 3,6)gH H= =
( (

, ( 100, 36)gH H= =
( (

and ( 1000, 360)gH H= =
( (

. 

Only the evolution of the dominant band associated to the micromorphic internal length is taken into 

consideration. The curves despite of being smoothened, still seem quite oscillating probably due to the dynamic 

effect. As shown from the numerical results, the width of  B
dom

 at 25,5% of total average strain is around 0,2mm 

for all the cases which is in total agreement with the experiments. It is obvious that the higher the values of the 

micromorphic moduli are, the smaller becomes the bandwidth at 21% of the total average strain rangeing 

between 15mm for  ( 1000, 360)gH H= =
( (

and 20mm for ( 10, 3,6)gH H= =
( (

. For the third combination of  

( 100, 36)gH H= =
( (

the values of the bandwidth at the starting and the finishing point are almost identical 

however, the error between the numerical and the experimental curve is the biggest among the three tests.   
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Figure 15. Evolution of the localization dominant band for ( 100, 36)gH H= =
( (

, numerical-experimental  

comparison for two varying meshes 0, 2msh mm=  and 0, 4msh mm=

Since the pair ( 100, 36)gH H= =
( (

seems the most suitable and the one that is closer to the experimental results in 

the terms of the values of the bandwidth for the interval of the total average strain which is of main interest, we 

chose to use it and keep it constant while varying the mesh size two times at  0, 2msh mm= and 0, 4msh mm= . It

seems that the mesh size does not affect the evolution of the band  and the tendency to decrease is respected as 

observed in the experiment. However, the bigger mesh of  0,4mm gives bigger value of the bandwidth at 21% as 

well as at 25,5% of the total average strain in contrast with the finer one where the values are in agreement with 

the experimental results.  

For all the cases, the decreasing tendency is in agreement with the experimental results.  We note that the 

parameter S  is directly linked to the ductility and governs the apparition of the fracture after the diffuse necking. 

Meanwhile, it is observed that its effect is to delay or accelerate the damage growth without modifying the shape 

of the damage evolution or the F u−  curves.

For 4.5S = (used for all the tests presented) the widths evolve at a much lower level which does not allow an

appropriate fitting. It is observed that the increase oft he parameter  S leads to a better fitting by reducing the 

difference between the experimental and the numerical curves. 

We note here that from the numerical point of view, for 0.4h = mm all the specimens failed at the opposite

direction (see Fig. 13), so the experimental B
dom

 is represented by the numerical band B2.

As a result from all the five cases tested, we can conclude that fine meshes and intermediate values of the 

micromorphic moduli (not extremely high that lead to strictions or relatively low approaching the local case) can 

provide a good agreement between the numerical and the existing experimental results and some useful 

information at first place for the identification of the micromorphic internal length and the justification of the 

choice of H
(

 and gH
(

at least for the current material used.  
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7 Conclusions and Future Works 

In this paper we have formulated a micromorphic fully coupled damage model taking into account the strong 

coupling between all the mechanical fields and the micromorphic damage. As a result, a new variational form and 

a new balance equation that should be resolved simultaneously with the classical equilibrium equation is 

introduced. This model has been implemented in a Finite Element code into ABAQUS®/Explicit, by developing 

within the explicit dynamic global resolution scheme, a specific finite element as well as a local integration 

scheme and is successfully validated through a classical tensile test. 

On the other hand, the micromorphic model, which has shown its ability to reduce the dependence of results 

against the mesh size, introduced a new parameter named as internal length of the material, which requires an 

experimental and numerical determination. For this need and by relying on the experimantal results coming from 

the speckle interferometry method, we introduce a numerical methodology in order to identify the appropriate 

value of the internal length related tot he micromorphic damage by trying to give it a physical meaning  onnecting 

it to the widths of the shear bands. 

Future works include the addition of more micromorphic degrees of freedom (e.g. micromorphic isotropic 

hardening) and extension of the model to the 3D case for various virtual metal forming processes. 

Also, the improvement of the numerical results and the curve fitting of the proposed identification methodology 

as well as the identification of the micromorphic internal length related to the micromorphic isotropic hardening 

and its connection to the materials microstructures under large strains will be further investigated. 
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