
HAL Id: hal-02272979
https://utt.hal.science/hal-02272979v1

Submitted on 7 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decentralized documents authoring system for
decentralized teamwork

Frédéric Merle, Aurélien Bénel, Guillaume Doyen, Dominique Gaïti

To cite this version:
Frédéric Merle, Aurélien Bénel, Guillaume Doyen, Dominique Gaïti. Decentralized documents author-
ing system for decentralized teamwork. 17th International Conference on Supporting Group Work
(ACM GROUP), Oct 2012, Sanibel Island, United States. pp.117-120, �10.1145/2389176.2389195�.
�hal-02272979�

https://utt.hal.science/hal-02272979v1
https://hal.archives-ouvertes.fr


Decentralized Documents Authoring System

for Decentralized Teamwork:

Matching Architecture with Organizational

Structure

Frédéric Merle, Aurélien Bénel, Guillaume Doyen and Dominique Gäıti

Abstract

While systems for collaborative distributed works focus on enhancing
distributed work group productivity, little attention has been paid to their
architecture. In fact, most of these systems rely on centralized ones for
both user communications and data hosting. These architectures raise
issues about the administrative control, maintenance and management of
the central entity. In this paper, we present a new architecture based on
peer-to-peer (P2P) model driven by user relationship. In our architecture,
users choose the trusted co-workers they are connected with. Thus, only
the most trusted users manage to obtain a high number of connections
which grant them a relative authority inside the system.

1 Introduction

Over the past twenty years, numerous new collaborative systems have been de-
veloped that greatly improve the ability of distributed groups to work together.
While human-computer interaction and new features have attracted much at-
tention over the past few years, these system architectures have not undergone
much improvement. In fact, most of them are highly centralized and do not
attempt to adjust themselves to group organizations. Indeed, virtual commu-
nities, like those in open source projects, are far from being as centralized as
the systems they use to work together [4]. Most of these communities adapt
themselves to the system architectures by granting some system administration
responsibilities to the most trusted members.

Nevertheless, many biases remain due to the mismatch between system ar-
chitecture and group organization. Firstly many systems are hosted by a third
party (service provider or institution) which dictates its own policies to users.
Such policies have to be taken into account by users and can alter group or-
ganizations. Secondly, the administration of the systems grants to its user an
authority over other group members. Such authority driven by architectural
considerations can lead to internal tensions inside a community. Finally, cen-

1



Figure 1: Social organization of the group

tralized architectures lack reliability. Many hazards like technical failures, ser-
vice closures or changes in policies of use, can affect the system access for users.
This kind of situation is even more harmful for collaborative works as most of
the time, data is directly hosted inside the system’s central entity.

In this paper, we present the use of the peer-to-peer (P2P) model for collabo-
rative systems. Unlike centralized architectures or other P2P systems proposals
[6], our aim is to fit the social organization to the working group level. Al-
though, fitting the architecture of an information system to the organizational
structure of a company has already been thoroughly studied [1], to the best of
our knowledge nothing has yet been undertaken for smaller and more changeable
structures like working groups. Thus, we use the relationships between group
members to drive the topology of our architecture. To do so, users are con-
nected to co-workers only if they trust them. Thus, the number of connections
of a user reflects the trust of his co-workers. Such architecture adapts itself to
the changes inside the social organization of the group that can occur. Further-
more, it has the same basic advantages as P2P systems such as scalability and
fault-tolerance.

In section 2, we present a realistic scenario of a group of users who collabo-
ratively author documents. Section 3 gives an overview of existing solutions to
our scenario. Then, in section 4, we present a system using our socially driven
architecture. We analyze its advantages regarding our scenario in section 5.

2 Scenario

We consider a group of users that collaboratively work on a set of documents
with a document authoring application. For simplicity, the group has only five
members and they work on three documents. Among members, three are the
founding members who started the project and have access to every document
and the two others are in charge of only some of the documents. Each of
those remaining members was asked to help by a founding member. Moreover,
only the founding member who invites a new member already knows him/her
(Figure 1).

The authoring of these documents is a background task for group members
and they do it in their free time. During these moments, they can have access
to Internet or not. No specific workflow has been defined for group members.

2



Thus, everyone can freely edit the documents without any control by other
members. However, all users have to be able to keep track of every modification
made to a document.

3 Existing solutions

Different solutions are already used for collaborative document authoring, such
as online word processors, file synchronization systems or revision control sys-
tems.

The most used online word processor is Google Docs.1 In this system, every
document is hosted by Google and can be authored by any authorized users
with the web interface. It keeps track of every revision made to a document
which allows a user to undo modifications previously made by another user. Its
main advantage is to allow co-writers to synchronically edit a document. But
this advantage comes with a major drawback (for users): the constant need of
an Internet connection.

File synchronization systems, like Dropbox,2 are used to synchronize files
and folders on two or more different computers. These systems use centralized
architecture to host the canonical version of each shared folder. Every modifica-
tion to a shared folder is pushed to this canonical version and applied to every
other user’s folder synchronized with it. The servers of these systems are always
hosted by a company which is subject to policy changes or sometimes even ser-
vice closures. Furthermore, only the last revision of a folder is replicated on user
computers, which means that only the last revision will be replicated. These
systems have an embedded a revision control feature which can only be used
from the canonical folder web interface which is hosted by the server. Thus, any
recovery of older versions of files needs a connection to the server.

Revision control systems are widely used by software developers to collabo-
ratively edit source code and documentation. Like file synchronization systems,
a centralized revision control system, like Subversion,3 uses a server to host the
canonical version of the project documents. Thus, any revision control opera-
tions or modification submissions need a connection with the server. In decen-
tralized revision control systems, like Git,4 each user hosts a copy as well as the
complete history of revision for every document of the project. Users work on
their own version of a project and periodically synchronize it with other users.
This synchronization can be done in P2P fashion. However, without any central
server, the synchronization becomes quickly unmanageable for more than three
users on the same project. Thus, these systems are mainly used with a central
server. What is more, these systems are not at all user-friendly as different com-
mands are needed to simply share or update documents. Finally, the merging
tools provided with these systems are usually for plain text rather than for office

1Google Docs, http://www.google.com/google-d-s/documents/
2Dropbox, http://www.dropbox.com/
3Apache Subversion, http://subversion.apache.org/
4Git, the fast version control system, http://git-scm.com/

3



documents.
None of those systems are really suitable for our scenario. They all use

centralized architectures which place a heavy constraint on users. In this kind of
architecture, server administrators have an overwhelming authority over users.
Thus, users always have to agree to the policies of the service providers or the IT
service which hosts the server. Furthermore, the service providers can close the
service or remove the server for internal reorganization or strategical reasons.
In addition, the founders of the group are usually given the ability to grant or
revoke membership. Even if users are now accustomed to them, these computer
models mimic very poorly the social organization and dynamics of a group.

4 Our proposal

We propose to extend a decentralized revision control system with an auto-
mated decentralized synchronization feature and a user friendly interface. We
chose Git as the decentralized revision control system because of its great pop-
ularity. Furthermore, it is built as a set of basic features warped together with
scripts, which eases its integration. To automatize the synchronization of the
user’s works, we use a P2P model based on group member relationships. These
systems use a virtual architecture, called ‘overlay’, to connect user’s computers
(‘peers’), with each other. We use the mutual trust between users to drive the
overlay construction, like in a Friend-to-Friend system [8]. Thus, our system
can follow the evolution of the social organization of the user’s group. Further-
more, this model allows users to collaboratively manage the group by trusting
or distrusting other members. To do this, we propose an interface for user rela-
tionship management. Then, we use another abstraction of social mechanisms
for document synchronization, called ‘epidemics algorithm’ or ‘gossip protocols’
[5, 2]. These algorithms broadcast information with low overheads for each peer
and high guarantees about information reception for every group member as
time goes by.

4.1 Overlay design driven by social organization

In this model, two peers share a connection only if their two owners agree to do
so. Consequently, a user can unilaterally break a connection with another peer.
Thus, the more a peer is connected with other user peers, the more the user is
trusted by the other group members. If a peer does not share a connection with
any other member peer, its user is evicted from the group. As a corollary, any
user peer who shares a connection with another member peer is also a member
of this group. Therefore, any member of the group can invite a new user inside
on their own by creating a connection with his/her peer.

The data about every peer inside the system is shared by all of them. This
is mandatory in order to allow users to create a new connection between their
peers and another member’s peer at any time. We extend this data to the list
of every peer a peer is connected with. This data is translated to users into the

4



Figure 2: Deployment diagram of our application over the group define into our
scenario

trust relationship between them which allows any group member to evaluate the
reputation of any other member inside the group. With our design, the overlay
structure tends to fit in with the social organization of a group (Figure 2). Thus,
mutual agreement between members can create any type of overlay structure.

Technically, to create a connection between two peers, each of them creates a
new account for the other with an access to the local project repository to allow
SSH connections. The peer also registers the other peer local repository as a
Git remote repository. To break a connection, a peer deletes this peer account
and removes its project repository from the Git remote repository list. To keep
track on any group member, each peer stores two lists: the connected peers list
and the peers list. The first one only refers to data about connected peers. The
second list contains data about every user peer of the group.

Every part of the overlay management is controlled through a contact man-
agement interface (Figure 3). We use the address book metaphor to facilitate
user adoption of the system. We enhance this kind of system with two func-
tions. The first is group management. This feature allows a user to create a
new group of users with the “add” button at the bottom of the first pane. If he
does, a window will ask them for a project name and the path to the synchro-
nized folder. A user can also invite someone from outside the group with “add”
button at the bottom of the second pane. If he does, the system will ask for this
user peer address in order to send it an invitation to join the group. This user
is notified of the invitation through a notification interface. When this user
joins the group, he automatically shares a trusted relationship with the user
who invited him. The second functionality is a trust relationship management.
It allows a user to modify her relationship status with a group member. With
the “modify trusted status” button, a user can change the relationship status
with the group member displayed on the third pane. Every modification to the
status is notified to this user through a notification interface. As the trusted
relationship inside the system is bidirectional, this member become a trusted
one only after he accepts the invitation. Thus, the trusted relationship reflects
both mutual trust between users and their will to work together.

5



Figure 3: Brett contact management interface (mockup)

4.2 Synchronization process

The system synchronizes both the Git local repository and the user list of every
group member peer. To achieve this synchronization, we combine two different
epidemic algorithms [5] like in [2]: rumour mongering and anti-entropy.

The rumour mongering algorithm broadcasts immediately new data with
a low guarantee that it reachs every peer. To enhance it, the anti-entropy
algorithm periodically synchronizes the latest data known by two peers to fetch
any missed rumours. This process automatically starts after a certain amount
of time or when a peer returns online.

Git features are very well suited to implement these algorithms: sending new
data can be carried out by a simple ‘push’ and the synchronization of the anti-
entropy process done by a ‘fetch’. Furthermore, with Git server-side ‘hooks’,
the system can be notified of these modifications and process them. For this
reason, we have choosen to use Git for the users list to manage updates. To
limit the size of the user’s list modification history, all modifications are made
inside a ‘branch’ which is weekly pruned.

For the synchronization management, the user interface is divided into two
parts: an icon on the system tray and another which can be found on the files
and folders contextual menu. The system tray icon of the system works as a
instant messenger one as it notifies the user about the state of their connection
with other members and their notifications. If the system cannot find a trusted
team member online, this icon is shaded. Under the icon, we have a counter
which shows the number of unread notifications. By a click on this icon, the user
opens a contextual menu with an access to the contact management interface
as its first entry. The other entries are notifications which can be removed by
ignoring them or, for invitations, by accepting them.

The contextual menu of a synchronized folder or document is extended with
two entries: “Share” and “History”. With “Share”, the user pushes his revision
to every member of the team. It opens an email-like interface (Figure 4) which

6



Figure 4: Share interface (mockup)

is pre-filled with the trusted members as message recipients and all the group as
a copy recipient. The choice of this kind of interface is driven by the constraints
similar of committing a revision and sending an attachment by email. Any
revision’s commit needs a brief description of the modification as would have
been made in the body of an email. Moreover, as trusted members of the group,
only message recipients receive a notification of this revision. Finally, the user
can add a new trusted member from this interface, as he would do if he added a
new recipient for an email. Thus, this metaphor turns ordinary email practice
into on of advanced revision control. “History” opens the revision history of
a folder or document. The interface of this history is out of the scope of this
document but could resemble a simplified version of GitX5 or SmartGit6 revision
tree visualization.

5 Advantages of our system

Regarding the scenario that we have proposed, our system fulfils most of the
requirements. Document authoring and revision control can be carried out by
any member of the group during both online and offline periods. The sharing of
the documents between founding members and the two remaining ones can be
done by having two distinct project folders. A global one shared only between
founding members and a sub-folder shared with the entire group which contains
only documents for the two other members. Every modification in the organi-
zation can be made by mutual agreement between members. Thus, a founding
member can be evicted from the project only if the two others agree to it. How-
ever, any of the remaining members can be evicted by the founding member
who invited them to join the project. Finally, our system is fully managed by
the users with no third party policies to restrict the system use. The limit of
our system, compared to centralized ones, is that members work is synchronized
only if two trusted members are online at the same time. However mutual online

5GitX, http://gitx.frim.nl/seeit.html
6SmartGit, http://www.syntevo.com/smartgit/features.html

7



periods are very likely, e.g. during office hours, and this limit only applies to
small groups.

Our model can be used for many different community organizations or ap-
plications. Indeed, our social-driven construction of the overlay is scalable and
can develop the same properties as structured overlays have [3]. Thus, most of
the P2P systems previously proposed can be used with our overlay construction
[6, 7]. Thus, our model is very versatile and can easily support large communi-
ties as well as a large range of features.

6 Conclusion

In this work, we have proposed a new kind of overlay construction for collab-
orative P2P systems. Our system uses social relationships between users to
drive the overlay construction. Thus, it fits the social organizational structure
of the group. With this overlay construction, we avoid organizational limits of
centralized architectures like third party policies, or the overbearing authority
of any server administrator. Furthermore, as a P2P model, our system provides
higher scalability and reliability, as well as wider offline features than central-
ized systems. We have illustrated these advantages over existing solutions on a
realistic scenario of collaborative document authoring. This work could be the
first step towards a fully decentralized infrastructure for various collaborative
software.

7 Acknowledgement

The authors are thankful to Peter Jacobs for his comments about a preliminary
version of this article.

References

[1] Y. Chan and B. Reich. IT alignment: what have we learned? Journal of
Information Technology, 22:297–315, September 2007.

[2] F. Cuenca-Acuna, C. Peery, R. Martin, and T. Nguyen. Planetp: Using gos-
siping to build content addressable peer-to-peer information sharing com-
munities. In 12th IEEE International Symposium on High Performance
Distributed Computing (HPDC’03), page 236, June 2003.

[3] M. Dell’Amico. Mapping small worlds. In Peer-to-Peer Computing, pages
219–228. IEEE, 2007.

[4] D. Demazière, F. Horn, and M. Zune. La dynamique de développement
des ’communautés’ du logiciel libre: conditions d’émergence et régulations
des tensions. Terminal, technologie de l’information, culture et société, (97-
98):71–84, 2006.

8



[5] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Stur-
gis, D. Swinehart, and D. Terry. Epidemic algorithms for replicated database
maintenance. In annual ACM Symposium on Principles of distributed com-
puting, pages 1–12. ACM, August 1987.

[6] P. Gotthelf, A. Zunino, and M. Campo. A decentralized middleware for
groupware applications. In international conference on Groupware: design
implementation, and use. Springer-Verlag, September 2007.

[7] G. Oster, P. Urso, P. Molli, and A. Imine. Data consistency for p2p collab-
orative editing. In Conference on Computer Supported Cooperative Work.
ACM, November 2006.

[8] M. Rogers and S. Bhatti. How to disappear completely: A survey of private
peer-to-peer networks. In International Workshop on Sustaining Privacy in
Autonomous Collaborative Environments. IFIP, July 2007.

9


