GEOMETRY AND VOLUME PRODUCT OF FINITE DIMENSIONAL LIPSCHITZ-FREE SPACES - Analyse en grande dimension, aspects géométriques et probabilistes
Article Dans Une Revue Journal of Functional Analysis Année : 2021

GEOMETRY AND VOLUME PRODUCT OF FINITE DIMENSIONAL LIPSCHITZ-FREE SPACES

Résumé

The goal of this paper is to study geometric and extremal properties of the convex body B F (M) , which is the unit ball of the Lipschitz-free Banach space associated with a finite metric space M. We investigate 1 and ∞-sums, in particular we characterize the metric spaces such that B F (M) is a Hanner polytope. We also characterize the finite metric spaces whose Lipschitz-free spaces are isometric. We discuss the extreme properties of the volume product P(M) = |B F (M) | · |B • F (M) |, when the number of elements of M is fixed. We show that if P(M) is maximal among all the metric spaces with the same number of points, then all triangle inequalities in M are strict and B F (M) is simplicial. We also focus on the metric spaces minimizing P(M), and on Mahler's conjecture for this class of convex bodies.
Fichier principal
Vignette du fichier
vp-lip-arxiv-v2.pdf (456.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02924433 , version 1 (28-08-2020)

Identifiants

Citer

Matthew Alexander, Matthieu Fradelizi, Luis García-Lirola, Artem Zvavitch. GEOMETRY AND VOLUME PRODUCT OF FINITE DIMENSIONAL LIPSCHITZ-FREE SPACES. Journal of Functional Analysis, 2021, 280 (4), pp.108849. ⟨10.1016/j.jfa.2020.108849⟩. ⟨hal-02924433⟩
41 Consultations
65 Téléchargements

Altmetric

Partager

More