Volume of the polar of random sets and shadow systems - Analyse en grande dimension, aspects géométriques et probabilistes
Article Dans Une Revue Mathematische Annalen Année : 2014

Volume of the polar of random sets and shadow systems

Résumé

We obtain optimal inequalities for the volume of the polar of random sets, generated for instance by the convex hull of independent random vectors in Euclidean space. Extremizers are given by random vectors uniformly distributed in Euclidean balls. This provides a random extension of the Blaschke–Santaló inequality which, in turn, can be derived by the law of large numbers. The method involves shadow systems, their connection to Busemann type inequalities, and how they interact with functional rearrangement inequalities.
Fichier principal
Vignette du fichier
1311.3690v1.pdf (257.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01122831 , version 1 (18-12-2024)

Identifiants

Citer

Dario Cordero-Erausquin, Matthieu Fradelizi, Grigoris Paouris, Peter Pivovarov. Volume of the polar of random sets and shadow systems. Mathematische Annalen, 2014, pp.1-21. ⟨10.1007/s00208-014-1156-x⟩. ⟨hal-01122831⟩
76 Consultations
0 Téléchargements

Altmetric

Partager

More