AstroCLIP: a cross-modal foundation model for galaxies - CEA - Université Paris-Saclay
Article Dans Une Revue Monthly Notices of the Royal Astronomical Society Année : 2024

AstroCLIP: a cross-modal foundation model for galaxies

Liam Parker
  • Fonction : Auteur
Siavash Golkar
  • Fonction : Auteur
Leopoldo Sarra
  • Fonction : Auteur
Miles Cranmer
  • Fonction : Auteur
Alberto Bietti
  • Fonction : Auteur
Michael Eickenberg
  • Fonction : Auteur
Geraud Krawezik
  • Fonction : Auteur
Michael Mccabe
  • Fonction : Auteur
Rudy Morel
  • Fonction : Auteur
Ruben Ohana
  • Fonction : Auteur
Mariel Pettee
  • Fonction : Auteur
Bruno Régaldo-Saint Blancard
  • Fonction : Auteur
Kyunghyun Cho
  • Fonction : Auteur
Shirley Ho
  • Fonction : Auteur

Résumé

We present AstroCLIP, a single, versatile model that can embed both galaxy images and spectra into a shared, physically meaningful latent space. These embeddings can then be used - without any model fine-tuning - for a variety of downstream tasks including (1) accurate in-modality and cross-modality semantic similarity search, (2) photometric redshift estimation, (3) galaxy property estimation from both images and spectra, and (4) morphology classification. Our approach to implementing AstroCLIP consists of two parts. First, we embed galaxy images and spectra separately by pre-training separate transformer-based image and spectrum encoders in self-supervised settings. We then align the encoders using a contrastive loss. We apply our method to spectra from the Dark Energy Spectroscopic Instrument and images from its corresponding Legacy Imaging Survey. Overall, we find remarkable performance on all downstream tasks, even relative to supervised baselines. For example, for a task like photometric redshift prediction, we find similar performance to a specifically trained ResNet18, and for additional tasks like physical property estimation (stellar mass, age, metallicity, and specific-star-formation rate), we beat this supervised baseline by 19 per cent in terms of R2. We also compare our results with a state-of-the-art self-supervised single-modal model for galaxy images, and find that our approach outperforms this benchmark by roughly a factor of two on photometric redshift estimation and physical property prediction in terms of R2, while remaining roughly in-line in terms of morphology classification. Ultimately, our approach represents the first cross-modal self-supervised model for galaxies, and the first self-supervised transformer-based architectures for galaxy images and spectra.
Fichier principal
Vignette du fichier
stae1450.pdf (3.63 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-04843522 , version 1 (17-12-2024)

Licence

Identifiants

Citer

Liam Parker, Francois Lanusse, Siavash Golkar, Leopoldo Sarra, Miles Cranmer, et al.. AstroCLIP: a cross-modal foundation model for galaxies. Monthly Notices of the Royal Astronomical Society, 2024, 531, pp.4990-5011. ⟨10.1093/mnras/stae1450⟩. ⟨insu-04843522⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More