A multi-dimensional, robust, and cell-centered finite-volume scheme for the ideal MHD equations - CEA - Université Paris-Saclay
Article Dans Une Revue Journal of Computational Physics Année : 2024

A multi-dimensional, robust, and cell-centered finite-volume scheme for the ideal MHD equations

Pascal Tremblin
  • Fonction : Auteur
Rémi Bourgeois
  • Fonction : Auteur
Solène Bulteau
  • Fonction : Auteur
Thomas Padioleau
  • Fonction : Auteur
Maxime Delorme
  • Fonction : Auteur
Antoine Strugarek
  • Fonction : Auteur
Allan Sacha Brun
  • Fonction : Auteur

Résumé

We present a new multi-dimensional, robust, and cell-centered finite-volume scheme for the ideal MHD equations. This scheme relies on relaxation and splitting techniques and can be easily used at high order. A fully conservative version is not entropy satisfying but is observed experimentally to be more robust than standard constrained transport schemes at low plasma beta. At very low plasma beta and high Alfvén number, we have designed an entropy-satisfying version that is not conservative for the magnetic field but preserves admissible states and we switch locally a-priori between the two versions depending on the regime of plasma beta and Alfvén number. This strategy is robust in a wide range of standard MHD test cases, all performed at second order with a classic MUSCL-Hancock scheme.
Fichier principal
Vignette du fichier
1-s2.0-S0021999124007034-main.pdf (2.43 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-04843503 , version 1 (17-12-2024)

Licence

Identifiants

Citer

Pascal Tremblin, Rémi Bourgeois, Solène Bulteau, Samuel Kokh, Thomas Padioleau, et al.. A multi-dimensional, robust, and cell-centered finite-volume scheme for the ideal MHD equations. Journal of Computational Physics, 2024, 519, ⟨10.1016/j.jcp.2024.113455⟩. ⟨insu-04843503⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More